1
|
Zhang B, Zhang D, Chen K, Wu T. Silibinin's role in counteracting neuronal apoptosis and synaptic dysfunction in Alzheimer's disease models. Apoptosis 2025:10.1007/s10495-024-02073-x. [PMID: 39833635 DOI: 10.1007/s10495-024-02073-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2024] [Indexed: 01/22/2025]
Abstract
This study investigates silibinin's capacity to mitigate Alzheimer's disease (AD) pathologies with a particular emphasis on its effects on apoptosis and synaptic dysfunction in AD models. Employing APP/PS1 transgenic mice and SH-SY5Y neuroblastoma cell lines, our research assessed the efficacy of silibinin in reducing amyloid-beta (Aβ) deposition, neuroinflammation, and neuronal apoptosis. Our results demonstrate that silibinin significantly decreases Aβ accumulation and neuroinflammation and robustly inhibits apoptosis in neuronal cells. Additionally, silibinin enhances the expression of synaptic proteins, thereby supporting synaptic integrity. Through network pharmacology analysis, we identified potential targets of silibinin in Aβ metabolism and synaptic functions. Mechanistically, our findings suggest that silibinin promotes neuronal survival predominantly via the modulation of the Fyn/GluN2B/CaMKIIα signaling pathway, which protects against Aβ1-42-induced apoptosis. These insights highlight silibinin's potential as a therapeutic agent for AD, particularly its role in reducing neuronal apoptosis and maintaining synaptic function.
Collapse
Affiliation(s)
- Baohui Zhang
- Department of Neurobiology, China Medical University, Shenyang, 110122, China
- Journal Center, China Medical University, Shenyang, 110122, China
| | - Di Zhang
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Keyan Chen
- Department of Laboratory Animal Science, China Medical University, No. 77, Puhe Road, Shenbei New District, Shenyang, Liaoning Province, 110122, China.
| | - Tengfei Wu
- Department of Laboratory Animal Science, China Medical University, No. 77, Puhe Road, Shenbei New District, Shenyang, Liaoning Province, 110122, China.
| |
Collapse
|
2
|
Hanin A, Cespedes J, Huttner A, Strelnikov D, Gopaul M, DiStasio M, Vezzani A, Hirsch LJ, Aronica E. Neuropathology of New-Onset Refractory Status Epilepticus (NORSE). J Neurol 2023:10.1007/s00415-023-11726-x. [PMID: 37079033 DOI: 10.1007/s00415-023-11726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
New-Onset Refractory Status Epilepticus (NORSE), including its subtype with a preceding febrile illness known as FIRES (Febrile Infection-Related Epilepsy Syndrome), is one of the most severe forms of status epilepticus. Despite an extensive workup (clinical evaluation, EEG, imaging, biological tests), the majority of NORSE cases remain unexplained (i.e., "cryptogenic NORSE"). Understanding the pathophysiological mechanisms underlying cryptogenic NORSE and the related long-term consequences is crucial to improve patient management and preventing secondary neuronal injury and drug-resistant post-NORSE epilepsy. Previously, neuropathological evaluations conducted on biopsies or autopsies have been found helpful for identifying the etiologies of some cases that were previously of unknown cause. Here, we summarize the findings of studies reporting neuropathology findings in patients with NORSE, including FIRES. We identified 64 cryptogenic cases and 66 neuropathology tissue samples, including 37 biopsies, 18 autopsies, and seven epilepsy surgeries (the type of tissue sample was not detailed for 4 cases). We describe the main neuropathology findings and place a particular emphasis on cases for which neuropathology findings helped establish a diagnosis or elucidate the pathophysiology of cryptogenic NORSE, or on described cases in which neuropathology findings supported the selection of specific treatments for patients with NORSE.
Collapse
Affiliation(s)
- Aurélie Hanin
- Department of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
- Institut du Cerveau, Paris Brain Institute, ICM, Inserm, CNRS, AP-HP, Hôpital de La Pitié-Salpêtrière, Sorbonne Université, DMU Neurosciences 6, Paris, France.
- Epilepsy Unit and Department of Clinical Neurophysiology, AP-HP, Hôpital de La Pitié-Salpêtrière, DMU Neurosciences 6, Paris, France.
| | - Jorge Cespedes
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- School of Medicine, Universidad Autonoma de Centro America, San Jose, Costa Rica
| | - Anita Huttner
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - David Strelnikov
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Margaret Gopaul
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Marcello DiStasio
- Department of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Annamaria Vezzani
- Department of Acute Brain Injury, Istituto di Recerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Lawrence J Hirsch
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, 1105, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| |
Collapse
|
3
|
Ruffolo G, Gaeta A, Cannata B, Pinzaglia C, Aronica E, Morano A, Cifelli P, Palma E. GABAergic Neurotransmission in Human Tissues Is Modulated by Cannabidiol. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122042. [PMID: 36556407 PMCID: PMC9786817 DOI: 10.3390/life12122042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Recently, the potential use of phytocannabinoids (pCBs) to treat different pathological conditions has attracted great attention in the scientific community. Among the different pCBs, cannabidiol (CBD) has showed interesting biological properties, making it a promising molecule with a high security profile that has been approved for treatment as an add-on therapy in patients afflicted by severe pharmaco-resistant epilepsy, including Dravet syndrome (DS), Lennox-Gastaut syndrome (LGS) and tuberous sclerosis complex (TSC). CBD is pharmacologically considered a "dirty drug", since it has the capacity to bind different targets and to activate several cellular pathways. GABAergic impairment is one of the key processes during the epileptogenesis period able to induce a generalized hyperexcitability of the central nervous system (CNS), leading to epileptic seizures. Here, by using the microtransplantation of human brain membranes approach in Xenopus oocytes and electrophysiological recordings, we confirm the ability of CBD to modulate GABAergic neurotransmission in human cerebral tissues obtained from patients afflicted by different forms of pharmaco-resistant epilepsies, such as DS, TSC, focal cortical dysplasia (FCD) type IIb and temporal lobe epilepsy (TLE). Furthermore, using cDNAs encoding for human GABAA receptor subunits, we found that α1β2 receptors are still affected by CBD, while classical benzodiazepine lost its efficacy as expected.
Collapse
Affiliation(s)
- Gabriele Ruffolo
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome Sapienza, 00185 Rome, Italy
- IRCCS San Raffaele Roma, 00163 Rome, Italy
| | - Alessandro Gaeta
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome Sapienza, 00185 Rome, Italy
| | - Beatrice Cannata
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome Sapienza, 00185 Rome, Italy
| | - Camilla Pinzaglia
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome Sapienza, 00185 Rome, Italy
| | - Eleonora Aronica
- Department of (Neuro)Pathology Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland, 0397 Heemstede, The Netherlands
| | - Alessandra Morano
- Department of Human Neuroscience, University of Rome Sapienza, 00185 Rome, Italy
| | - Pierangelo Cifelli
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Correspondence:
| | - Eleonora Palma
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome Sapienza, 00185 Rome, Italy
- IRCCS San Raffaele Roma, 00163 Rome, Italy
| |
Collapse
|