1
|
Venkatakrishnan P, Sreenivasan J, Chenthilnathan C. Drusen drizzle. Indian J Ophthalmol 2023; 71:2937. [PMID: 37530259 PMCID: PMC10538833 DOI: 10.4103/ijo.ijo_3019_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Affiliation(s)
- Praveena Venkatakrishnan
- Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, 18, College Road, Chennai, Tamil Nadu, India
| | - Janani Sreenivasan
- Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, 18, College Road, Chennai, Tamil Nadu, India
| | - Charanya Chenthilnathan
- Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, 18, College Road, Chennai, Tamil Nadu, India
| |
Collapse
|
2
|
Alhazimi A, Aljuhni A, Almadhi A, Alrumaih I, Khalaf A, Alruwaili S, Alkadi T, Almarek F, Almazrou A. Awareness of age-related macular degeneration and its associated risk factors: a cross-sectional study among the Saudi population. JOURNAL OF THE EGYPTIAN OPHTHALMOLOGICAL SOCIETY 2022. [DOI: 10.4103/ejos.ejos_41_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
3
|
Sura AA, Chen L, Messinger JD, Swain TA, McGwin G, Freund KB, Curcio CA. Measuring the Contributions of Basal Laminar Deposit and Bruch's Membrane in Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2021; 61:19. [PMID: 33186466 PMCID: PMC7671869 DOI: 10.1167/iovs.61.13.19] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose Basal laminar deposit (BLamD) is a consistent finding in age-related macular degeneration (AMD). We quantified BLamD thickness, appearance, and topography in eyes of aged donors with and without AMD and evaluated its relationship to other components of the retinal pigment epithelium-basal lamina/Bruch's membrane (RPE-BL-BrM) complex. Methods Donor eyes (n = 132) were classified as normal (n = 54), early to intermediate AMD (n = 24), geographic atrophy (GA; n = 13), and neovascular AMD (NV; n = 41). In high-resolution histology, we assessed RPE, BLamD, and BrM thicknesses and phenotypes at 3309 predefined locations in the central (foveal and perifovea) and superior (perifoveal) sections. Pre-mortem optical coherence tomography (OCT) imaging of a 90-year-old woman was compared to postmortem histopathology. Results In non-atrophic areas of AMD eyes, the RPE-BLamD is thick (normal = 13.7 µm, early-intermediate = 16.8 µm, GA = 17.4 µm, NV = 18.7 µm), because the BLamD is thick (normal = 0.3 µm, early-intermediate = 5.5 µm, GA = 4.1 µm, NV = 5.3 µm). RPE layer thickness is similar across these stages. Disease-associated variants of BLamD (thick, late, basal mounds) cluster subfoveally. A thick BLamD is visible on OCT as a hyporeflective split in the RPE-BL-BrM complex. BrM is thin (3.5 µm) in NV (normal = 4.2 µm, early to intermediate = 4.4 µm, and GA = 4.2 µm). Conclusions The RPE-BL-BrM complex is thick in AMD, driven by the accumulation and expansion of BLamD rather than expansion of either three-layer BrM, RPE-BL, or RPE. BLamD is clinically appreciable by OCT in some patients as a non-neovascular "split RPE-BL-BrM complex" or "double-layer sign." BLamD may contribute toward the formation and progression of high-risk drusen yet also exhibit protective properties.
Collapse
Affiliation(s)
- Amol A Sura
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States
| | - Ling Chen
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States.,The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, China
| | - Jeffrey D Messinger
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States
| | - Thomas A Swain
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States.,Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Gerald McGwin
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States.,Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - K Bailey Freund
- Vitreous Retina Macula Consultants of New York, New York, New York, United States.,Department of Ophthalmology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.,LuEsther T. Mertz Retinal Research Center, Manhattan Eye Ear and Throat Hospital, New York, New York, United States.,Department of Ophthalmology, NYU Langone School of Medicine, New York, New York, United States.,Columbia University College of Physicians and Surgeons, Harkness Eye Institute, New York, New York, United States
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States
| |
Collapse
|
4
|
Chen L, Messinger JD, Kar D, Duncan JL, Curcio CA. Biometrics, Impact, and Significance of Basal Linear Deposit and Subretinal Drusenoid Deposit in Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2021; 62:33. [PMID: 33512402 PMCID: PMC7846955 DOI: 10.1167/iovs.62.1.33] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023] Open
Abstract
Purpose Basal linear deposit (BLinD) is a thin layer of soft drusen material. To elucidate the biology of extracellular deposits conferring age-related macular degeneration (AMD) progression risk and inform multimodal clinical imaging based on optical coherence tomography (OCT), we examined lipid content and regional prevalence of BLinD, soft drusen, pre-BLinD, and subretinal drusenoid deposit (SDD) in AMD and non-AMD aged eyes. We estimated BLinD volume and illustrated its relation to type 1 macular neovascularization (MNV). Methods Donor eyes were classified as early to intermediate AMD (n = 25) and age-matched controls (n = 54). In high-resolution histology, we assessed BLinD/soft drusen thickness at 836 and 1716 locations in AMD and control eyes, respectively. BLinD volume was estimated using solid geometry in donor eyes, one clinically characterized. Results BLinD, drusen, type 1 MNV, and fluid occupy the sub-RPE-basal laminar space. BLinD volume in a 3-mm diameter circle may be as much as 0.0315 mm3. Osmophilic lipid was more concentrated in BLinD/drusen than SDD. In the fovea, BLinD/drusen was prevalent in AMD eyes; pre-BLinD was prevalent in control eyes. SDD was low in the fovea and high in perifovea, especially in AMD eyes. Conclusions Although invisible, BLinD may presage type 1 MNV. BLinD volume approaches the criterion OCT drusen volume of 0.03 mm3 for AMD progression risk. BLinD culminates years of subfoveal lipid accumulation. SDD is detected relatively late in life, with currently unknown precursors. Deposit topography suggests one outer retinal lipid recycling system serving specialized cone and rod physiology, and its dysregulation in AMD is due to impaired transfer to the circulation.
Collapse
Affiliation(s)
- Ling Chen
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, China
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Jeffrey D. Messinger
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Deepayan Kar
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Jacque L. Duncan
- Department of Ophthalmology, University of California San Francisco, San Francisco, California, United States
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
5
|
Zhang X, Sivaprasad S. Drusen and pachydrusen: the definition, pathogenesis, and clinical significance. Eye (Lond) 2020; 35:121-133. [PMID: 33208847 DOI: 10.1038/s41433-020-01265-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022] Open
Abstract
The pachychoroid disease spectrum encompasses seven major retinal conditions including central serous chorioretinopathy (CSC), polypoidal choroidal vasculopathy (PCV), and pachychoroid neovasculopathy or type I macular neovascularisation (MNV) secondary to chronic persistent thickening and dysfunction of the choroidal vasculature. Drusen are focal yellow-white deposits of extracellular debris, which consist of complement proteins, esterified and nonesterified cholesterol, apolipoproteins, carbohydrates, and trace elements, above the retinal pigment epithelium (RPE) or between the RPE and Bruch's membrane. Although drusen are an essential disease precursor of advanced age-related macular degeneration (AMD), a new entity "pachydrusen" has been identified to be associated with some of the enitites that constitute the pachychoroid spectrum. It remains to be determined what the exact differences are between soft drusen, pseudodrusen, and pachydrusen in terms of phenotype, genotype, and pathogenesis. Improving our knowledge in these areas will inevitably improve our understanding of their clinical significance especially as in disease prediction in AMD and the pachychroid spectrum disorders. It remains controversial whether PCV is a subtype of AMD. Understanding the pathogenesis of different types of drusen may also help in addressing if phenotype and/or genotype of type 1 MNV associated with pachychoroid are similar to type 1 MNV related to AMD. Furthermore, because pachydrusen links two pachychoroid diseases, CSC and PCV, it is also of great interest to investigate if CSC is an early stage or a predictor of PCV in future research. In this review, we share our experience in clinical practice and the latest published evidence-based literature to emphasize the differences and similarities in morphology, pathogenesis, and clinical significance of drusen and pachydrusen, a new member of the pachychoroid spectrum disorders.
Collapse
Affiliation(s)
- Xinyuan Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, PR China.
| | - Sobha Sivaprasad
- NIHR Moorfields Biomedical Research Centre, Moorfields Eye Hospital, London, UK
| |
Collapse
|
6
|
Curcio CA. Antecedents of Soft Drusen, the Specific Deposits of Age-Related Macular Degeneration, in the Biology of Human Macula. Invest Ophthalmol Vis Sci 2018; 59:AMD182-AMD194. [PMID: 30357337 PMCID: PMC6733529 DOI: 10.1167/iovs.18-24883] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AMD pathobiology was irreversibly changed by the recent discovery of extracellular cholesterol-containing deposits in the subretinal space, between the photoreceptors and retinal pigment epithelium (RPE), called subretinal drusenoid deposits (SDDs). SDDs strikingly mirror the topography of rod photoreceptors in human macula, raising the question of whether an equivalent process results in a deposition related to foveal cones. Herein we propose that AMD's pathognomonic lesion-soft drusen and basal linear deposit (BLinD, same material, diffusely distributed)-is the leading candidate. Epidemiologic, clinical, and histologic data suggest that these deposits are most abundant in the central macula, under the fovea. Strong evidence presented in a companion article supports the idea that the dominant ultrastructural component is large apolipoprotein B,E-containing lipoproteins, constitutively secreted by RPE. Lipoprotein fatty acids are dominated by linoleate (implicating diet) rather than docosahexaenoate (implicating photoreceptors); we seek within the retina cellular relationships and dietary drivers to explain soft druse topography. The delivery of xanthophyll pigments to highly evolved and numerous Müller cells in the human fovea, through RPE, is one strong candidate, because Müller cells are the main reservoir of these pigments, which replenish from diet. We propose that the evolution of neuroglial relations and xanthophyll delivery that underlie exquisite human foveal vision came with a price, that is, soft drusen and sequela, long after our reproductive years.
Collapse
Affiliation(s)
- Christine A Curcio
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
7
|
Bloch SB. Implementation studies of ranibizumab for neovascular age-related macular degeneration. Acta Ophthalmol 2013; 91 Thesis7:1-22. [PMID: 24206851 DOI: 10.1111/aos.12272] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The pathogenesis of AMD is associated with age changes plus pathological changes involving oxidative stress and an altered inflammatory response leading to injury of retinal pigment epithelial cells and the adjacent choroidea and photoreceptor cells. AMD is divided into early, intermediate and advanced AMD. The advanced form of AMD is further divided into non-neovascular AMD and neovascular AMD. The diagnosis of neovascular AMD is based on FA and clinical characteristics of the eyes. The CNV lesions are by their growth pattern divided into type 1 CNV lesions, which grow primarily beneath the RPE, and type 2 CNV lesions, which have penetrated the RPE and evolve within the subretinal space. The natural course of neovascular AMD leads to visual disability in a majority of cases within the first years after onset, primarily caused by the development of subfoveal fibrous tissue and atrophy of the RPE. The prognosis of visual acuity in neovascular AMD has been markedly improved by the introduction of an intravitreal administered VEGF inhibitor (ranibizumab) given on a monthly basis. Treatment with ranibizumab for neovascular AMD was introduced in Denmark in 2006 under a fully reimbursed national healthcare plan. Treatment with ranibizumab is given in a variable dosing regimen that varies from the monthly dosing regimen administered in the studies that led to the approval of ranibizumab for neovascular AMD in Europe. The main objectives of this PhD thesis were to evaluate and potentially improve treatment with ranibizumab in a variable OCT guided regimen for neovascular AMD. Another intension of this PhD thesis was to prepare the conditions for future research to further improve the visual prognosis in neovascular AMD treated with anti-VEGF agents. The first study revealed that vision was improved in eyes with active neovascular AMD treated for 1 year in a variable ranibizumab treatment regimen as compared to PDT and the natural course of the disease. We assumed by comparing our results with other pro re nata regimens based on a monthly reassessment of disease activity that our patients could gain substantial vision if we optimized our frequency of re-examinations. The analysis demonstrated that we could discontinue treatment in patients who had a poor visual acuity during the first 3 months of treatment and that visual outcome could be improved by minimizing the delay from diagnosis of neovascular AMD to first administered ranibizumab injection. This study led to changes in departmental treatment procedures. In the second study, we found that type 2 CNV lesions had a higher hazard ratio as compared to type 1 CNV lesions in developing subfoveal fibrosis. Prominent subfoveal fibrous tissue and fibrous tissue with retinal atrophy led to poorer visual performances in eyes with neovascular AMD after 2 years of treatment as compared with eyes without subfoveal fibrous tissue. In the development of randomized clinical trials designed to address how treatment with VEGF inhibitors can be improved by limiting the growth of subfoveal fibrous tissue or neuroretinal atrophy, it is important to define subgroups of eyes at risk of these pathological changes. The second PhD study has contributed to identify this subgroup of eyes. The third study included in this PhD thesis revealed that the annual incidence rate of AMD-related legally blind persons registered in Denmark has halved during the last decade, with the bulk of the reduction observed after the introduction of ranibizumab for neovascular AMD.
Collapse
Affiliation(s)
- Sara Brandi Bloch
- Department of Ophthalmology; Glostrup Hospital; Glostrup Denmark
- Faculty of Health Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|