1
|
Oh AJ, Chen T, Shariati MA, Jehangir N, Hwang TN, Liao YJ. A simple saccadic reading test to assess ocular motor function in cerebellar ataxia. PLoS One 2018; 13:e0203924. [PMID: 30403759 PMCID: PMC6221255 DOI: 10.1371/journal.pone.0203924] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 08/30/2018] [Indexed: 01/09/2023] Open
Abstract
Cerebellar ataxia is a neurological disorder due to dysfunction of the cerebellum that affects coordination of fine movement, gait, and balance. Although ataxic patients commonly exhibit abnormal eye movement and have difficulties with saccadic reading, quantification of ocular motor abilities during reading in the clinical setting is rarely done. In this study, we assess visual performance with simple reading tests that can be used in the clinical setting and performed video infrared oculography in 11 patients with hereditary or acquired cerebellar ataxia and 11 age-matched controls. We found that compared with controls, ataxic patients read significantly slower on regularly and irregularly spaced 120 single-digit number reading tasks (read aloud) (p = 0.02 for both) but not on a word reading task (read silently), although there was large variability on the word reading task. Among the 3 reading tasks, the regularly spaced number reading task had the greatest difference (44%) between ataxic patients and controls. Analysis of oculography revealed that ataxic patients had slower reading speeds on the regularly spaced number reading task because of significantly higher saccade and fixation counts, impairment of small amplitude progressive saccades as well as large amplitude, line-changing saccades, greater fixation dispersion, and irregularity of scan paths and staircase gaze patterns. Our findings show that infrared oculography remains the gold standard in assessment of ocular motor difficulties during reading in ataxic patients. In the absence of this capability in the clinical setting, a simple 120 regularly spaced single-digit saccadic number reading test, which most patients can perform in less than 2 minutes, can be a possible biomarker for ocular motor abilities necessary for reading.
Collapse
Affiliation(s)
- Angela Jinsook Oh
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Tiffany Chen
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Mohammad Ali Shariati
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Naz Jehangir
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Thomas N. Hwang
- Department of Ophthalmology, Kaiser Permanente Redwood City Medical Center, Redwood City, California, United States of America
| | - Yaping Joyce Liao
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Neurology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
2
|
Kawarai T, Tajima A, Kuroda Y, Saji N, Orlacchio A, Terasawa H, Shimizu H, Kita Y, Izumi Y, Mitsui T, Imoto I, Kaji R. A homozygous mutation of VWA3B causes cerebellar ataxia with intellectual disability. J Neurol Neurosurg Psychiatry 2016; 87:656-62. [PMID: 26157035 DOI: 10.1136/jnnp-2014-309828] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 06/15/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Hereditary cerebellar ataxia constitutes a heterogeneous group of neurodegenerative disorders, occasionally accompanied by other neurological features. Genetic defects remain to be elucidated in approximately 40% of hereditary cerebellar ataxia cases in Japan. We attempted to identify the gene responsible for autosomal recessive cerebellar ataxia with intellectual disability. METHODS The present study involved three patients in a consanguineous Japanese family. Neurological examination and gene analyses were performed in all family members. We performed genome-wide linkage analysis including single nucleotide polymorphism arrays, copy-number variation analysis and whole exome sequencing. To clarify the functional alteration resulting from the identified mutation, we performed cell viability assay of cultured cells expressing mutant protein. RESULTS One homozygous region shared among the three patients on chromosomes 2p16.1-2q12.3 was identified. Using whole exome sequencing, six homozygous variants in genes in the region were detected. Only one variant, VWA3B c.A1865C, results in a change of a highly conserved amino acid (p.K622T) and was not present in control samples. VWA3B encodes a von Willebrand Factor A Domain-Containing Protein 3B with ubiquitous expression, including the cerebellum. The viability of cultured cells expressing the specific K622T mutation was proved to decrease through the activation of apoptotic pathway. CONCLUSIONS Mutated VWA3B was found to be likely associated with cerebellar degeneration with intellectual disability. Although a rare cause of cerebellar degeneration, these findings indicate a critical role for VWA3B in the apoptosis pathway in neuronal tissues.
Collapse
Affiliation(s)
- Toshitaka Kawarai
- Department of Clinical Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Atsushi Tajima
- Department of Human Genetics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan Department of Bioinformatics and Genomics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yukiko Kuroda
- Department of Clinical Research, Tokushima National Hospital, National Hospital Organization, Tokushima, Japan
| | - Naoki Saji
- Department of Stroke Medicine, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Antonio Orlacchio
- Laboratorio di Neurogenetica, CERC-IRCCS Santa Lucia, Rome, Italy Dipartimento di Medicina dei Sistemi, Università di Roma "Tor Vergata", Rome, Italy
| | - Hideo Terasawa
- Department of Neurology, Hyogo Brain and Heart Centre, Himeji City, Hyogo, Japan
| | - Hirotaka Shimizu
- Department of Neurology, Hyogo Brain and Heart Centre, Himeji City, Hyogo, Japan
| | - Yasushi Kita
- Department of Neurology, Hyogo Brain and Heart Centre, Himeji City, Hyogo, Japan
| | - Yuishin Izumi
- Department of Clinical Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takao Mitsui
- Department of Clinical Research, Tokushima National Hospital, National Hospital Organization, Tokushima, Japan
| | - Issei Imoto
- Department of Human Genetics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Ryuji Kaji
- Department of Clinical Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
3
|
Giunti P, Mantuano E, Frontali M, Veneziano L. Molecular mechanism of Spinocerebellar Ataxia type 6: glutamine repeat disorder, channelopathy and transcriptional dysregulation. The multifaceted aspects of a single mutation. Front Cell Neurosci 2015; 9:36. [PMID: 25762895 PMCID: PMC4329791 DOI: 10.3389/fncel.2015.00036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/21/2015] [Indexed: 11/23/2022] Open
Abstract
Spinocerebellar Ataxia type 6 (SCA6) is an autosomal dominant neurodegenerative disease characterized by late onset, slowly progressive, mostly pure cerebellar ataxia. It is one of three allelic disorders associated to CACNA1A gene, coding for the Alpha1 A subunit of P/Q type calcium channel Cav2.1 expressed in the brain, particularly in the cerebellum. The other two disorders are Episodic Ataxia type 2 (EA2), and Familial Hemiplegic Migraine type 1 (FHM1). These disorders show distinct phenotypes that often overlap but have different pathogenic mechanisms. EA2 and FHM1 are due to mutations causing, respectively, a loss and a gain of channel function. SCA6, instead, is associated with short expansions of a polyglutamine stretch located in the cytoplasmic C-terminal tail of the protein. This domain has a relevant role in channel regulation, as well as in transcription regulation of other neuronal genes; thus the SCA6 CAG repeat expansion results in complex pathogenic molecular mechanisms reflecting the complex Cav2.1 C-terminus activity. We will provide a short review for an update on the SCA6 molecular mechanism.
Collapse
Affiliation(s)
- Paola Giunti
- Laboratory of Neurogenetics, Department of Molecular Neuroscience, UCL Institute of Neurology London, UK
| | - Elide Mantuano
- Laboratory of Neurogenetics, Institute of Translational Pharmacology, National Research Council of Italy Rome, Italy
| | - Marina Frontali
- Laboratory of Neurogenetics, Institute of Translational Pharmacology, National Research Council of Italy Rome, Italy
| | - Liana Veneziano
- Laboratory of Neurogenetics, Institute of Translational Pharmacology, National Research Council of Italy Rome, Italy
| |
Collapse
|
4
|
Subramony S, Moscovich M, Ashizawa T. Genetics and Clinical Features of Inherited Ataxias. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00062-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|