1
|
Okonkwo E, Saha B, Sahu G, Bera A, Sharma P. Blood-Based Lateral-Flow Immunoassays Dipstick Test for Damaged Mitochondrial Electron Transport Chain in Pyruvate Treated Rats with Combined Blast Exposure and Hemorrhagic Shock. J Clin Med 2025; 14:754. [PMID: 39941423 PMCID: PMC11818850 DOI: 10.3390/jcm14030754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Blast trauma presents a unique challenge due to its complex mechanism of injury, which impacts the brain and other vital organs through overpressure waves and internal bleeding. Severe blood loss leads to an inadequate oxygen supply and insufficient fuel delivery to cells, impairing ATP production by mitochondria-essential for cell survival. While clinical symptoms of metabolic disruption are evident soon after injury, the molecular, cellular, and systemic damage persists for days to years post-injury. Current challenges in treating traumatic brain injury (TBI) stem from (1) the lack of early blood-based biomarkers for detecting metabolic failure and mitochondrial damage and (2) the limited success of mitochondrial-targeted therapeutic strategies. Objectives: To identify blood-based mitochondrial biomarkers for evaluating the severity of brain injuries and to investigate therapeutic strategies targeting mitochondria. Methods: A preclinical rat model subjected to blast exposure, with or without hemorrhagic shock (HS), followed by resuscitation was utilized. Blood samples were obtained at baseline (T0), post-injury (T60), and at the conclusion of the experiment (T180), and analyzed using a validated dipstick assay to measure mitochondrial enzyme activity. Results: Blast and HS injuries led to a significant decrease in the activity of mitochondrial enzymes, including complex I, complex IV, and the pyruvate dehydrogenase complex (PDH), compared to baseline (p < 0.05). Concurrently, blood lactate concentrations were significantly elevated (p < 0.001). An inverse correlation was observed between mitochondrial enzyme dysfunction and blood lactate levels (p < 0.05). Treatment with sodium pyruvate post-injury restored complex I, complex IV, and PDH activity to near-baseline levels, corrected hyperlactatemia, and reduced reactive oxygen species (ROS) production by mitochondria. Conclusions: Serial monitoring of blood mitochondrial enzyme activity, such as complex I, complex IV, and PDH, may serve as a valuable tool for prognostication and guiding the use of mitochondrial-targeted therapies. Additionally, mitochondrial enzyme assays in blood samples can provide insights into the global redox status, potentially paving the way for novel therapeutic interventions in TBI.
Collapse
Affiliation(s)
| | | | | | | | - Pushpa Sharma
- Department of Anesthesiology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
2
|
Lee WL, Alias A, Lim MS. Case Report and Literature Review: A Severe Case of Blast-Related Traumatic Brain Injury. Asian J Neurosurg 2024; 19:816-824. [PMID: 39606303 PMCID: PMC11588618 DOI: 10.1055/s-0044-1791582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
Blast-related traumatic brain injuries (bTBIs), once considered the signature wound of wars, have increasingly affected civilian populations due to the rise in terrorist attacks and industrial accidents. These injuries are complex, resulting from a combination of primary blast effects, secondary projectiles, tertiary impacts, and quaternary injuries from burns and toxic gas inhalation. Understanding the clinical presentation, management strategies, and outcomes of bTBIs is essential for enhancing patient care and improving prognosis. We report a case of industrial-related severe bTBI with opened depressed skull fracture and intracranial hematoma. The patient underwent decompressive craniectomy and evacuation of clot but postoperatively had a stormy recovery and multiple complications. He eventually succumbed due to his complications. This underscores the complexity of bTBIs and highlights the importance of a multidisciplinary approach in the management of bTBIs. Further research is needed to optimize treatment protocols and rehabilitation strategies for individuals with bTBIs.
Collapse
Affiliation(s)
- Wei Lun Lee
- Neurosurgery Department, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Azmi Alias
- Neurosurgery Department, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Mei Sin Lim
- Neurosurgery Department, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Neuroprotective and Anti-inflammatory Effects of Pioglitazone on Traumatic Brain Injury. Mediators Inflamm 2022; 2022:9860855. [PMID: 35757108 PMCID: PMC9232315 DOI: 10.1155/2022/9860855] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/06/2022] [Accepted: 05/24/2022] [Indexed: 02/07/2023] Open
Abstract
Traumatic brain injury (TBI) is still a major cause of concern for public health, and out of all the trauma-related injuries, it makes the highest contribution to death and disability worldwide. Patients of TBI continue to suffer from brain injury through an intricate flow of primary and secondary injury events. However, when treatment is provided in a timely manner, there is a significant window of opportunity to avoid a few of the serious effects. Pioglitazone (PG), which has a neuroprotective impact and can decrease inflammation after TBI, activates peroxisome proliferator-activated receptor-gamma (PPARγ). The objective of the study is to examine the existing literature to assess the neuroprotective and anti-inflammatory impact of PG in TBI. It also discusses the part played by microglia and cytokines in TBI. According to the findings of this study, PG has the ability to enhance neurobehavior, decrease brain edema and neuronal injury following TBI. To achieve the protective impact of PG the following was required: (1) stimulating PPARγ; (2) decreasing oxidative stress; (3) decreasing nuclear factor kappa B (NF-κB), interleukin 6 (IL-6), interleukin-1β (IL-1β), cyclooxygenase-2 (COX-2), and C-C motif chemokine ligand 20 (CCL20) expression; (4) limiting the increase in the number of activated microglia; and (5) reducing mitochondrial dysfunction. The findings indicate that when PIG is used clinically, it may serve as a neuroprotective anti-inflammatory approach in TBI.
Collapse
|
4
|
Sharma HS, Lafuente JV, Feng L, Muresanu DF, Menon PK, Castellani RJ, Nozari A, Sahib S, Tian ZR, Buzoianu AD, Sjöquist PO, Patnaik R, Wiklund L, Sharma A. Methamphetamine exacerbates pathophysiology of traumatic brain injury at high altitude. Neuroprotective effects of nanodelivery of a potent antioxidant compound H-290/51. PROGRESS IN BRAIN RESEARCH 2021; 266:123-193. [PMID: 34689858 DOI: 10.1016/bs.pbr.2021.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Military personnel are often exposed to high altitude (HA, ca. 4500-5000m) for combat operations associated with neurological dysfunctions. HA is a severe stressful situation and people frequently use methamphetamine (METH) or other psychostimulants to cope stress. Since military personnel are prone to different kinds of traumatic brain injury (TBI), in this review we discuss possible effects of METH on concussive head injury (CHI) at HA based on our own observations. METH exposure at HA exacerbates pathophysiology of CHI as compared to normobaric laboratory environment comparable to sea level. Increased blood-brain barrier (BBB) breakdown, edema formation and reductions in the cerebral blood flow (CBF) following CHI were exacerbated by METH intoxication at HA. Damage to cerebral microvasculature and expression of beta catenin was also exacerbated following CHI in METH treated group at HA. TiO2-nanowired delivery of H-290/51 (150mg/kg, i.p.), a potent chain-breaking antioxidant significantly enhanced CBF and reduced BBB breakdown, edema formation, beta catenin expression and brain pathology in METH exposed rats after CHI at HA. These observations are the first to point out that METH exposure in CHI exacerbated brain pathology at HA and this appears to be related with greater production of oxidative stress induced brain pathology, not reported earlier.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Per-Ove Sjöquist
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
5
|
Flanagan G, Velez T, Gu W, Singman E. The Relationship Between Severe Visual Acuity Loss, Traumatic Brain Injuries, and Ocular Injuries in American Service Members From 2001 to 2015. Mil Med 2021; 185:e1576-e1583. [PMID: 32627822 DOI: 10.1093/milmed/usaa154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Although traumatic brain injury (TBI) is known to cause many visual problems, the correlation between the extent of severe visual acuity loss (SVAL) and severity of TBI has not been widely explored. In this retrospective analysis, combined information from Department of Defense (DoD)/Veterans Affairs ocular injury and TBI repositories were used to evaluate the relationship between chronic SVAL, TBI, ocular injuries, and associated ocular sequelae for U.S. service members serving between 2001 and 2015. MATERIALS AND METHODS The Defense and Veterans Eye Injury and Vision Registry (DVEIVR) is an initiative led by the DoD and Veterans Affairs that consists of clinical and related data for service members serving in theater since 2001. The Defense and Veterans Brain Injury Center (DVBIC) is the DoD's office for tracking TBI data in the military and maintains data on active-duty service members with a TBI diagnosis since 2000. Longitudinal data from these 2 resources for encounters between February 2001 and October 2015 were analyzed to understand the relation between SVAL, and TBI while adjusting for ocular covariates such as open globe injury (OGI), disorders of the anterior segment and disorders of the posterior segment in a logistic regression model. TBI cases in DVEIVR were identified using DVBIC data and classified according to International Statistical Classification of Diseases criteria established by DVBIC. Head trauma and other open head wounds (OOHW) were also included. SVAL cases in DVEIVR were identified using both International Statistical Classification of Diseases criteria for blindness and low vision as well as visual acuity test data recorded in DVEIVR. RESULTS Data for a total of 25,193 unique patients with 88,996 encounters were recorded in DVEIVR from February, 2001 to November, 2015. Of these, 7,217 TBI and 1,367 low vision cases were identified, with 638 patients experiencing both. In a full logistic model, neither UTBI nor differentiated TBI (DTBI, ie, mild, moderate, severe, penetrating, or unclassified) were significant risk factors for SVAL although ocular injuries (disorders of the anterior segment, disorders of the posterior segment, and OGI) and OOHW were significant. CONCLUSION Any direct injury to the eye or head risks SVAL but the location and severity will modify that risk. After adjusting for OGIs, OOHW and their sequelae, TBI was found to not be a significant risk factor for SVAL in patients recorded in DVEIVR. Further research is needed to explore whether TBI is associated with more moderate levels of vision acuity loss.
Collapse
Affiliation(s)
- Gerald Flanagan
- Computer Technology Associates, Inc. 543 W. Graaf Ave, Ridgecrest, CA 93555
| | - Tom Velez
- Computer Technology Associates, Inc. 543 W. Graaf Ave, Ridgecrest, CA 93555
| | - Weidong Gu
- Vision Center of Excellence Defense Health Agency Research and Development, Directorate Defense Health Agency, 1335 East-West Highway, SSMC1 Suite 9-100, Silver Spring, MD 20910
| | - Eric Singman
- Wilmer Eye Institute Johns Hopkins Hospital Wilmer B29 @ Johns Hopkins Hospital, 600 N. Wolfe St., Baltimore, MD 21287
| |
Collapse
|
6
|
Kawa L, Arborelius UP, Hökfelt T, Risling M. Sex-Specific Differences in Rodents Following a Single Primary Blast Exposure: Focus on the Monoamine and Galanin Systems. Front Neurol 2020; 11:540144. [PMID: 33178100 PMCID: PMC7593658 DOI: 10.3389/fneur.2020.540144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/25/2020] [Indexed: 01/16/2023] Open
Abstract
Most blast-induced traumatic brain injuries (bTBI) are mild in severity and culpable for the lingering and persistent neuropsychological complaints in affected individuals. There is evidence that the prevalence of symptoms post-exposure may be sex-specific. Our laboratory has focused on changes in the monoamine and the neuropeptide, galanin, systems in male rodents following primary bTBI. In this study, we aimed to replicate these findings in female rodents. Brainstem sections from the locus coeruleus (LC) and dorsal raphe nuclei (DRN) were processed for in situ hybridisation at 1 and 7 days post-bTBI. We investigated changes in the transcripts for tyrosine hydroxylase (TH), tryptophan hydroxylase two (TPH2) and galanin. Like in males, we found a transient increase in TH transcript levels bilaterally in the female LC. Changes in TPH2 mRNA were more pronounced and extensive in the DRN of females compared to males. Galanin mRNA was increased bilaterally in the LC and DRN, although this increase was not apparent until day 7 in the LC. Serum analysis revealed an increase in corticosterone, but only in exposed females. These changes occurred without any visible signs of white matter injury, cell death, or blood–brain barrier breakdown. Taken together, in the apparent absence of visible structural damage to the brain, the monoamine and galanin systems, two key players in emotional regulation, are activated deferentially in males and females following primary blast exposure. These similarities and differences should be considered when developing and evaluating diagnostic and therapeutic interventions for bTBI.
Collapse
Affiliation(s)
- Lizan Kawa
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Ulf P Arborelius
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Mårten Risling
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
7
|
Muresanu DF, Sharma A, Sahib S, Tian ZR, Feng L, Castellani RJ, Nozari A, Lafuente JV, Buzoianu AD, Sjöquist PO, Patnaik R, Wiklund L, Sharma HS. Diabetes exacerbates brain pathology following a focal blast brain injury: New role of a multimodal drug cerebrolysin and nanomedicine. PROGRESS IN BRAIN RESEARCH 2020; 258:285-367. [PMID: 33223037 DOI: 10.1016/bs.pbr.2020.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Blast brain injury (bBI) is a combination of several forces of pressure, rotation, penetration of sharp objects and chemical exposure causing laceration, perforation and tissue losses in the brain. The bBI is quite prevalent in military personnel during combat operations. However, no suitable therapeutic strategies are available so far to minimize bBI pathology. Combat stress induces profound cardiovascular and endocrine dysfunction leading to psychosomatic disorders including diabetes mellitus (DM). This is still unclear whether brain pathology in bBI could exacerbate in DM. In present review influence of DM on pathophysiology of bBI is discussed based on our own investigations. In addition, treatment with cerebrolysin (a multimodal drug comprising neurotrophic factors and active peptide fragments) or H-290/51 (a chain-breaking antioxidant) using nanowired delivery of for superior neuroprotection on brain pathology in bBI in DM is explored. Our observations are the first to show that pathophysiology of bBI is exacerbated in DM and TiO2-nanowired delivery of cerebrolysin induces profound neuroprotection in bBI in DM, not reported earlier. The clinical significance of our findings with regard to military medicine is discussed.
Collapse
Affiliation(s)
- Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Per-Ove Sjöquist
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
8
|
Bugay V, Bozdemir E, Vigil FA, Chun SH, Holstein DM, Elliott WR, Sprague CJ, Cavazos JE, Zamora DO, Rule G, Shapiro MS, Lechleiter JD, Brenner R. A Mouse Model of Repetitive Blast Traumatic Brain Injury Reveals Post-Trauma Seizures and Increased Neuronal Excitability. J Neurotrauma 2019; 37:248-261. [PMID: 31025597 DOI: 10.1089/neu.2018.6333] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Repetitive blast traumatic brain injury (TBI) affects numerous soldiers on the battlefield. Mild TBI has been shown to have long-lasting effects with repeated injury. We have investigated effects on neuronal excitability after repetitive, mild TBI in a mouse model of blast-induced brain injury. We exposed mice to mild blast trauma of an average peak overpressure of 14.6 psi, repeated across three consecutive days. While a single exposure did not reveal trauma as indicated by the glial fibrillary acidic protein indicator, three repetitive blasts did show significant increases. As well, mice had an increased indicator of inflammation (Iba-1) and increased tau, tau phosphorylation, and altered cytokine levels in the spleen. Video-electroencephalographic monitoring 48 h after the final blast exposure demonstrated seizures in 50% (12/24) of the mice, most of which were non-convulsive seizures. Long-term monitoring revealed that spontaneous seizures developed in at least 46% (6/13) of the mice. Patch clamp recording of dentate gyrus hippocampus neurons 48 h post-blast TBI demonstrated a shortened latency to the first spike and hyperpolarization of action potential threshold. We also found that evoked excitatory postsynaptic current amplitudes were significantly increased. These findings indicate that mild, repetitive blast exposures cause increases in neuronal excitability and seizures and eventual epilepsy development in some animals. The non-convulsive nature of the seizures suggests that subclinical seizures may occur in individuals experiencing even mild blast events, if repeated.
Collapse
Affiliation(s)
- Vladislav Bugay
- Cell and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas
| | - Eda Bozdemir
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - Fabio A Vigil
- Cell and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas
| | - Sang H Chun
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - Deborah M Holstein
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - William R Elliott
- Sensory Trauma, United States Army Institute of Surgical Research, Fort Sam Houston San Antonio, Texas
| | - Cassie J Sprague
- Sensory Trauma, United States Army Institute of Surgical Research, Fort Sam Houston San Antonio, Texas
| | - Jose E Cavazos
- Cell and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas.,Department of Neurology, University of Texas Health San Antonio, San Antonio, Texas
| | - David O Zamora
- Sensory Trauma, United States Army Institute of Surgical Research, Fort Sam Houston San Antonio, Texas
| | | | - Mark S Shapiro
- Cell and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas
| | - James D Lechleiter
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - Robert Brenner
- Cell and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
9
|
Zhou Y, Wen LL, Wang HD, Zhou XM, Fang J, Zhu JH, Ding K. Blast-Induced Traumatic Brain Injury Triggered by Moderate Intensity Shock Wave Using a Modified Experimental Model of Injury in Mice. Chin Med J (Engl) 2019; 131:2447-2460. [PMID: 30334530 PMCID: PMC6202591 DOI: 10.4103/0366-6999.243558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Background The increasing frequency of explosive injuries has increased interest in blast-induced traumatic brain injury (bTBI). Various shock tube models have been used to study bTBI. Mild-to-moderate explosions are often overlooked because of the slow onset or mildness of the symptoms. However, heavy gas cylinders and large volume chambers in the model may increase the complexity and danger. This study sought to design a modified model to explore the effect of moderate explosion on brain injury in mice. Methods Pathology scoring system (PSS) was used to distinguish the graded intensity by the modified model. A total of 160 mice were randomly divided into control, sham, and bTBI groups with different time points. The clinical features, imaging features, neurobehavior, and neuropathology were detected after moderate explosion. One-way analysis of variance followed by Fisher's least significant difference posttest or Dunnett's t 3-test was performed for data analyses. Results PSS of mild, moderate, and severe explosion was 13.4 ± 2.2, 32.6 ± 2.7 (t = 13.92, P < 0.001; vs. mild group), and 56.6 ± 2.8 (t = 31.37, P < 0.001; vs. mild group), respectively. After moderate explosion, mice showed varied symptoms of malaise, anorexia, incontinence, apnea, or seizure. After bTBI, brain edema reached the highest peak at day 3 (82.5% ± 2.1% vs. 73.8% ± 0.6%, t = 7.76, P < 0.001), while the most serious neurological outcomes occurred at day 1 (Y-maze: 8.25 ± 2.36 vs. 20.00 ± 4.55, t = -4.59, P = 0.048; 29.58% ± 2.84% vs. 49.09% ± 11.63%, t = -3.08, P = 0.008; neurologic severity score: 2.50 ± 0.58 vs. 0.00 ± 0.00, t = 8.65, P = 0.016). We also found that apoptotic neurons (52.76% ± 1.99% vs. 1.30% ± 0.11%, t = 57.20, P < 0.001) and gliosis (2.98 ± 0.24 vs. 1.00 ± 0.00, t = 14.42, P = 0.021) in the frontal were significantly higher at day 3 post-bTBI than sham bTBI. Conclusions We provide a reliable, reproducible bTBI model in mice that can produce a graded explosive waveform similar to the free-field shock wave in a controlled laboratory environment. Moderate explosion can trigger mild-to-moderate blast damage of the brain.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Jiangsu, Nanjing 210002, China
| | - Li-Li Wen
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Jiangsu, Nanjing 210002, China
| | - Han-Dong Wang
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Jiangsu, Nanjing 210002, China
| | - Xiao-Ming Zhou
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Jiangsu, Nanjing 210002, China
| | - Jiang Fang
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Jiangsu, Nanjing 210002, China
| | - Jian-Hong Zhu
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Jiangsu, Nanjing 210002, China
| | - Ke Ding
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Jiangsu, Nanjing 210002, China
| |
Collapse
|
10
|
|
11
|
Filley CM, Kelly JP. White Matter and Cognition in Traumatic Brain Injury. J Alzheimers Dis 2018; 65:345-362. [DOI: 10.3233/jad-180287] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Christopher M. Filley
- Behavioral Neurology Section, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO, USA
- Marcus Institute for Brain Health, University of Colorado School of Medicine, Aurora, CO, USA
| | - James P. Kelly
- Behavioral Neurology Section, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
- Marcus Institute for Brain Health, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
12
|
Agoston DV. Modeling the Long-Term Consequences of Repeated Blast-Induced Mild Traumatic Brain Injuries. J Neurotrauma 2018; 34:S44-S52. [PMID: 28937952 DOI: 10.1089/neu.2017.5317] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Repeated mild traumatic brain injury (rmTBI) caused by playing collision sports or by exposure to blasts during military operations can lead to late onset, chronic diseases such as chronic traumatic encephalopathy (CTE), a progressive neurodegenerative condition that manifests in increasingly severe neuropsychiatric abnormalities years after the last injury. Currently, because of the heterogeneity of the clinical presentation, confirmation of a CTE diagnosis requires post-mortem examination of the brain. The hallmarks of CTE are abnormal accumulation of phosphorylated tau protein, TDP-43 immunoreactive neuronal cytoplasmic inclusions, and astroglial abnormalities, but the pathomechanism leading to these terminal findings remains unknown. Animal modeling can play an important role in the identification of CTE pathomechanisms, the development of early stage diagnostic and prognostic biomarkers, and pharmacological interventions. Modeling the long-term consequences of blast rmTBI in animals is especially challenging because of the complexities of blast physics and animal-to-human scaling issues. This review summarizes current knowledge about the pathobiologies of CTE and rmbTBI and discusses problems as well as potential solutions related to high-fidelity modeling of rmbTBI and determining its long-term consequences.
Collapse
Affiliation(s)
- Denes V Agoston
- Department of Anatomy, Physiology and Genetics, Uniformed Services University , Bethesda, Maryland; Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
13
|
Kenzie ES, Parks EL, Bigler ED, Wright DW, Lim MM, Chesnutt JC, Hawryluk GWJ, Gordon W, Wakeland W. The Dynamics of Concussion: Mapping Pathophysiology, Persistence, and Recovery With Causal-Loop Diagramming. Front Neurol 2018; 9:203. [PMID: 29670568 PMCID: PMC5893805 DOI: 10.3389/fneur.2018.00203] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/14/2018] [Indexed: 12/21/2022] Open
Abstract
Despite increasing public awareness and a growing body of literature on the subject of concussion, or mild traumatic brain injury, an urgent need still exists for reliable diagnostic measures, clinical care guidelines, and effective treatments for the condition. Complexity and heterogeneity complicate research efforts and indicate the need for innovative approaches to synthesize current knowledge in order to improve clinical outcomes. Methods from the interdisciplinary field of systems science, including models of complex systems, have been increasingly applied to biomedical applications and show promise for generating insight for traumatic brain injury. The current study uses causal-loop diagramming to visualize relationships between factors influencing the pathophysiology and recovery trajectories of concussive injury, including persistence of symptoms and deficits. The primary output is a series of preliminary systems maps detailing feedback loops, intrinsic dynamics, exogenous drivers, and hubs across several scales, from micro-level cellular processes to social influences. Key system features, such as the role of specific restorative feedback processes and cross-scale connections, are examined and discussed in the context of recovery trajectories. This systems approach integrates research findings across disciplines and allows components to be considered in relation to larger system influences, which enables the identification of research gaps, supports classification efforts, and provides a framework for interdisciplinary collaboration and communication-all strides that would benefit diagnosis, prognosis, and treatment in the clinic.
Collapse
Affiliation(s)
- Erin S. Kenzie
- Systems Science Program, Portland State University, Portland, OR, United States
| | - Elle L. Parks
- Systems Science Program, Portland State University, Portland, OR, United States
| | - Erin D. Bigler
- Department of Psychology and Neuroscience Center, Brigham Young University, Provo, UT, United States
| | - David W. Wright
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Miranda M. Lim
- Sleep Disorders Clinic, Division of Hospital and Specialty Medicine, Research Service, VA Portland Health Care System, Portland, OR, United States
- Departments of Neurology, Medicine, and Behavioral Neuroscience, Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, United States
| | - James C. Chesnutt
- TBI/Concussion Program, Orthopedics & Rehabilitation, Neurology and Family Medicine, Oregon Health & Science University, Portland, OR, United States
| | | | - Wayne Gordon
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Wayne Wakeland
- Systems Science Program, Portland State University, Portland, OR, United States
| |
Collapse
|
14
|
Kenzie ES, Parks EL, Bigler ED, Lim MM, Chesnutt JC, Wakeland W. Concussion As a Multi-Scale Complex System: An Interdisciplinary Synthesis of Current Knowledge. Front Neurol 2017; 8:513. [PMID: 29033888 PMCID: PMC5626937 DOI: 10.3389/fneur.2017.00513] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/13/2017] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) has been called "the most complicated disease of the most complex organ of the body" and is an increasingly high-profile public health issue. Many patients report long-term impairments following even "mild" injuries, but reliable criteria for diagnosis and prognosis are lacking. Every clinical trial for TBI treatment to date has failed to demonstrate reliable and safe improvement in outcomes, and the existing body of literature is insufficient to support the creation of a new classification system. Concussion, or mild TBI, is a highly heterogeneous phenomenon, and numerous factors interact dynamically to influence an individual's recovery trajectory. Many of the obstacles faced in research and clinical practice related to TBI and concussion, including observed heterogeneity, arguably stem from the complexity of the condition itself. To improve understanding of this complexity, we review the current state of research through the lens provided by the interdisciplinary field of systems science, which has been increasingly applied to biomedical issues. The review was conducted iteratively, through multiple phases of literature review, expert interviews, and systems diagramming and represents the first phase in an effort to develop systems models of concussion. The primary focus of this work was to examine concepts and ways of thinking about concussion that currently impede research design and block advancements in care of TBI. Results are presented in the form of a multi-scale conceptual framework intended to synthesize knowledge across disciplines, improve research design, and provide a broader, multi-scale model for understanding concussion pathophysiology, classification, and treatment.
Collapse
Affiliation(s)
- Erin S. Kenzie
- Systems Science Program, Portland State University, Portland, OR, United States
| | - Elle L. Parks
- Systems Science Program, Portland State University, Portland, OR, United States
| | - Erin D. Bigler
- Department of Psychology and Neuroscience Center, Brigham Young University, Provo, UT, United States
| | - Miranda M. Lim
- Sleep Disorders Clinic, Division of Hospital and Specialty Medicine, Veterans Affairs Portland Health Care System, Portland, OR, United States
- Departments of Neurology, Medicine, and Behavioral Neuroscience, and Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, United States
| | - James C. Chesnutt
- TBI/Concussion Program, Orthopedics & Rehabilitation and Family Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Wayne Wakeland
- Systems Science Program, Portland State University, Portland, OR, United States
| |
Collapse
|
15
|
Defective methionine metabolism in the brain after repeated blast exposures might contribute to increased oxidative stress. Neurochem Int 2017; 112:234-238. [PMID: 28774719 DOI: 10.1016/j.neuint.2017.07.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 07/29/2017] [Indexed: 01/26/2023]
Abstract
Blast-induced traumatic brain injury (bTBI) is one of the major disabilities in Service Members returning from recent military operations. The neurobiological underpinnings of bTBI, which are associated with acute and chronic neuropathological and neurobehavioral deficits, are uncertain. Increased oxidative stress in the brain is reported to play a significant role promoting neuronal damage associated with both brain injury and neurodegenerative disorders. In this study, brains of rats exposed to repeated blasts in a shock tube underwent untargeted profiling of primary metabolism by automatic linear exchange/cold injection GC-TOF mass spectrometry and revealed acute and sub-acute disruptions in the metabolism of the essential amino acid methionine and associated antioxidants. Methionine sulfoxide, the oxidized metabolite of methionine, showed a sustained increase in the brain after blast exposure which was associated with a significant decrease in cysteine, the amino acid derived from methionine. Glutathione, the antioxidant synthesized from cysteine, also concomitantly decreased as did the antioxidant ascorbic acid. Reductions in ascorbic acid were accompanied by increased levels of its oxidized metabolite, dehydroascorbic acid and other metabolites such as threonic acid, isothreonic acid, glycolic acid and oxalic acid. Fluorometric analysis of the brains showed acute and sub-acute increase in total reactive oxygen species. In view of the fundamental importance of glutathione in the brain as an antioxidant, including its role in the reduction of dehydroascorbic acid to ascorbic acid, the disruptions in methionine metabolism elicited by blast exposure might prominently contribute to neuronal injury by promoting increased and sustained oxidative stress.
Collapse
|
16
|
Agoston DV, Langford D. Big Data in traumatic brain injury; promise and challenges. Concussion 2017; 2:CNC45. [PMID: 30202589 PMCID: PMC6122694 DOI: 10.2217/cnc-2016-0013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 05/25/2017] [Indexed: 01/14/2023] Open
Abstract
Traumatic brain injury (TBI) is a spectrum disease of overwhelming complexity, the research of which generates enormous amounts of structured, semi-structured and unstructured data. This resulting big data has tremendous potential to be mined for valuable information regarding the "most complex disease of the most complex organ". Big data analyses require specialized big data analytics applications, machine learning and artificial intelligence platforms to reveal associations, trends, correlations and patterns not otherwise realized by current analytical approaches. The intersection of potential data sources between experimental TBI and clinical TBI research presents inherent challenges for setting parameters for the generation of common data elements and to mine existing legacy data that would allow highly translatable big data analyses. In order to successfully utilize big data analyses in TBI, we must be willing to accept the messiness of data, collect and store all data and give up causation for correlation. In this context, coupling the big data approach to established clinical and pre-clinical data sources will transform current practices for triage, diagnosis, treatment and prognosis into highly integrated evidence-based patient care.
Collapse
Affiliation(s)
- Denes V Agoston
- Department of Anatomy, Physiology & Genetics, Uniformed Services University, Bethesda, MD 20814, USA.,Department of Neuroscience, Karolinska Institute, Stockholm, Sweden.,Department of Anatomy, Physiology & Genetics, Uniformed Services University, Bethesda, MD 20814, USA.,Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Dianne Langford
- Department of Neuroscience, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.,Department of Neuroscience, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
17
|
Schwab K, Terrio HP, Brenner LA, Pazdan RM, McMillan HP, MacDonald M, Hinds SR, Scher AI. Epidemiology and prognosis of mild traumatic brain injury in returning soldiers. Neurology 2017; 88:1571-1579. [DOI: 10.1212/wnl.0000000000003839] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 01/03/2017] [Indexed: 11/15/2022] Open
Abstract
Objective:Mild traumatic brain injury (mTBI; concussion) is common in returning service members yet limited definitive evidence exists on its prognosis.Methods:Almost 25,000 non–medically evacuated soldiers returning from Afghanistan or Iraq to 2 military bases between 2009 and 2014 were screened for mTBI. We invited a random sample to participate in the present study, oversampling those screening positive, resulting in 557 mTBI cases and 1,010 controls, of whom 366 cases and 599 controls completed 3-month follow-up evaluations. The criterion measure of screened mTBI was the Ohio State University Traumatic Brain Injury Identification Method. Postconcussive symptoms (PCS) were measured at follow-up with the Neurobehavioral Symptom Inventory. Symptoms reported at a severe or very severe level were considered clinically relevant.Results:About half (47%) of soldiers who had sustained an mTBI during this latest deployment reported PCS at 3-month follow-up vs 25% of controls: adjusted odds ratio 2.4 (1.8–3.2). The most commonly reported symptoms (cases vs controls) were sleep problems (30% vs 14%), forgetfulness (21% vs 9%), irritability (17% vs 8%), and headaches (15% vs 5%). mTBI cases were about twice as likely as controls to report receiving rehabilitative services and fair or poor health. Other predictors of PCS included posttraumatic stress, combat exposure, and noncephalic pain. A majority of both cases and controls reported traumatic brain injuries predating this latest deployment.Conclusions:In this nonclinical population of recently deployed soldiers, a substantial proportion of those who had sustained an mTBI were symptomatic 3 months postdeployment. Future studies need to include longer follow-up to measure symptom resolution.Clinicaltrials.gov identifier:NCT01847040.
Collapse
|
18
|
Iacono D, Shively SB, Edlow BL, Perl DP. Chronic Traumatic Encephalopathy: Known Causes, Unknown Effects. Phys Med Rehabil Clin N Am 2017; 28:301-321. [PMID: 28390515 DOI: 10.1016/j.pmr.2016.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chronic traumatic encephalopathy (CTE) is a neuropathologic diagnosis typically made in human brains with a history of repetitive traumatic brain injury (rTBI). It remains unknown whether CTE occurs exclusively after rTBI, or whether a single TBI (sTBI) can cause CTE. Similarly, it is unclear whether impact (eg, motor vehicle accidents) and non-impact (eg, blasts) types of energy transfer trigger divergent or common pathologies. While it is established that a history of rTBI increases the risk of multiple neurodegenerative diseases (eg, dementia, parkinsonism, and CTE), the possible pathophysiologic and molecular mechanisms underlying these risks have yet to be elucidated.
Collapse
Affiliation(s)
- Diego Iacono
- Brain Tissue Repository & Neuropathology Core, Center for Neuroscience and Regenerative Medicine (CNRM), Uniformed Services University of the Health Sciences (USUHS), 4301 Jones Bridge Road, Bethesda, MD 20814, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), 6720A Rockledge Dr #100, Bethesda, MD 20817, USA
| | - Sharon B Shively
- Brain Tissue Repository & Neuropathology Core, Center for Neuroscience and Regenerative Medicine (CNRM), Uniformed Services University of the Health Sciences (USUHS), 4301 Jones Bridge Road, Bethesda, MD 20814, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), 6720A Rockledge Dr #100, Bethesda, MD 20817, USA; Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences (USUHS), 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Brian L Edlow
- Department of Neurology, Massachusetts General Hospital, 175 Cambridge Street - Suite 300, Boston, MA 02114, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA
| | - Daniel P Perl
- Brain Tissue Repository & Neuropathology Core, Center for Neuroscience and Regenerative Medicine (CNRM), Uniformed Services University of the Health Sciences (USUHS), 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences (USUHS), 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| |
Collapse
|
19
|
|