1
|
Figueroa MC, Gregory DD, Williford KH, Fike DJ, Lyons TW. A Machine-Learning Approach to Biosignature Exploration on Early Earth and Mars Using Sulfur Isotope and Trace Element Data in Pyrite. ASTROBIOLOGY 2024. [PMID: 39453409 DOI: 10.1089/ast.2024.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
We propose a novel approach to identify the origin of pyrite grains and distinguish biologically influenced sedimentary pyrite using combined in situ sulfur isotope (δ34S) and trace element (TE) analyses. To classify and predict the origin of individual pyrite grains, we applied multiple machine-learning algorithms to coupled δ34S and TE data from pyrite grains formed from diverse sedimentary, hydrothermal, and metasomatic processes across geologic time. Our unsupervised classification algorithm, K-means++ cluster analysis, yielded six classes based on the formation environment of the pyrite: sedimentary, low temperature hydrothermal, medium temperature, polymetallic hydrothermal, high temperature, and large euhedral. We tested three supervised models (random forest [RF], Naïve Bayes, k-nearest neighbors), and RF outperformed the others in predicting pyrite formation type, achieving a precision (area under the ROC curve) of 0.979 ± 0.005 and an overall average class accuracy of 0.878 ± 0.005. Moreover, we found that coupling TE and δ34S data significantly improved the performance of the RF model compared with using either TE or δ34S data alone. Our data provide a novel framework for exploring sedimentary rocks that have undergone multiple hydrothermal, magmatic, and metamorphic alterations. Most significant, however, is the demonstrated potential for distinguishing between biogenic and abiotic pyrite in samples from early Earth. This approach could also be applied to the search for potential biosignatures in samples returned from Mars.
Collapse
Affiliation(s)
- Maria C Figueroa
- Earth and Planetary Sciences, University of California, Riverside, California, USA
| | - Daniel D Gregory
- Department of Earth Sciences, University of Toronto, Toronto, Canada
| | | | - David J Fike
- Earth and Planetary Sciences, Washington University, St. Louis, Missouri, USA
| | - Timothy W Lyons
- Earth and Planetary Sciences, University of California, Riverside, California, USA
| |
Collapse
|
2
|
Antony R, Mongad D, Sanyal A, Dhotre D, Thamban M. Holed up, but thriving: Impact of multitrophic cryoconite communities on glacier elemental cycles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173187. [PMID: 38750762 DOI: 10.1016/j.scitotenv.2024.173187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
Cryoconite holes (water and sediment-filled depressions), found on glacier surfaces worldwide, serve as reservoirs of microbes, carbon, trace elements, and nutrients, transferring these components downstream via glacier hydrological networks. Through targeted amplicon sequencing of carbon and nitrogen cycling genes, coupled with functional inference-based methods, we explore the functional diversity of these mini-ecosystems within Antarctica and the Himalayas. These regions showcase distinct environmental gradients and experience varying rates of environmental change influenced by global climatic shifts. Analysis revealed a diverse array of photosynthetic microorganisms, including Stramenopiles, Cyanobacteria, Rhizobiales, Burkholderiales, and photosynthetic purple sulfur Proteobacteria. Functional inference highlighted the high potential for carbohydrate, amino acid, and lipid metabolism in the Himalayan region, where organic carbon concentrations surpassed those in Antarctica by up to 2 orders of magnitude. Nitrogen cycling processes, including fixation, nitrification, and denitrification, are evident, with Antarctic cryoconite exhibiting a pronounced capacity for nitrogen fixation, potentially compensating for the limited nitrate concentrations in this region. Processes associated with the respiration of elemental sulfur and inorganic sulfur compounds such as sulfate, sulfite, thiosulfate, and sulfide suggest the presence of a complete sulfur cycle. The Himalayan region exhibits a higher potential for sulfur cycling, likely due to the abundant sulfate ions and sulfur-bearing minerals in this region. The capability for complete iron cycling through iron oxidation and reduction reactions was also predicted. Methanogenic archaea that produce methane during organic matter decomposition and methanotrophic bacteria that utilize methane as carbon and energy sources co-exist in the cryoconite, suggesting that these niches support the complete cycling of methane. Additionally, the presence of various microfauna suggests the existence of a complex food web. Collectively, these results indicate that cryoconite holes are self-sustaining ecosystems that drive elemental cycles on glaciers and potentially control carbon, nitrogen, sulfur, and iron exports downstream.
Collapse
Affiliation(s)
- Runa Antony
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco-da-Gama, India; GFZ German Research Centre for Geosciences, Potsdam, Germany.
| | - Dattatray Mongad
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | - Aritri Sanyal
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco-da-Gama, India
| | - Dhiraj Dhotre
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | - Meloth Thamban
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco-da-Gama, India
| |
Collapse
|
3
|
Zhuang X, Wang S, Wu S. Electron Transfer in the Biogeochemical Sulfur Cycle. Life (Basel) 2024; 14:591. [PMID: 38792612 PMCID: PMC11123123 DOI: 10.3390/life14050591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Microorganisms are key players in the global biogeochemical sulfur cycle. Among them, some have garnered particular attention due to their electrical activity and ability to perform extracellular electron transfer. A growing body of research has highlighted their extensive phylogenetic and metabolic diversity, revealing their crucial roles in ecological processes. In this review, we delve into the electron transfer process between sulfate-reducing bacteria and anaerobic alkane-oxidizing archaea, which facilitates growth within syntrophic communities. Furthermore, we review the phenomenon of long-distance electron transfer and potential extracellular electron transfer in multicellular filamentous sulfur-oxidizing bacteria. These bacteria, with their vast application prospects and ecological significance, play a pivotal role in various ecological processes. Subsequently, we discuss the important role of the pili/cytochrome for electron transfer and presented cutting-edge approaches for exploring and studying electroactive microorganisms. This review provides a comprehensive overview of electroactive microorganisms participating in the biogeochemical sulfur cycle. By examining their electron transfer mechanisms, and the potential ecological and applied implications, we offer novel insights into microbial sulfur metabolism, thereby advancing applications in the development of sustainable bioelectronics materials and bioremediation technologies.
Collapse
Affiliation(s)
- Xuliang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (X.Z.); (S.W.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Shijie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (X.Z.); (S.W.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanghua Wu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (X.Z.); (S.W.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Emmings JF, Poulton SW, Walsh J, Leeming KA, Ross I, Peters SE. Pyrite mega-analysis reveals modes of anoxia through geological time. SCIENCE ADVANCES 2022; 8:eabj5687. [PMID: 35294245 PMCID: PMC8926349 DOI: 10.1126/sciadv.abj5687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
The redox structure of the water column in anoxic basins through geological time remains poorly resolved despite its importance to biological evolution/extinction and biogeochemical cycling. Here, we provide a temporal record of bottom and pore water redox conditions by analyzing the temporal distribution and chemistry of sedimentary pyrite. We combine machine-reading techniques, applied over a large library of published literature, with statistical analysis of element concentrations in databases of sedimentary pyrite and bulk sedimentary rocks to generate a scaled analysis spanning the majority of Earth's history. This analysis delineates the prevalent anoxic basin states from the Archaean to present day, which are associated with diagnostic combinations of five types of syngenetic pyrite. The underlying driver(s) for the pyrite types are unresolved but plausibly includes the ambient seawater inventory, precipitation kinetics, and the (co)location of organic matter degradation coupled to sulfate reduction, iron (oxyhydr)oxide dissolution, and pyrite precipitation.
Collapse
Affiliation(s)
- Joseph F. Emmings
- British Geological Survey, Keyworth, Nottingham NG12
5GG, UK
- School of Geography, Geology and the Environment,
University of Leicester, Leicester LE1 7RH, UK
| | - Simon W. Poulton
- School of Earth and Environment, University of Leeds,
Leeds LS2 9JT, UK
| | - Joanna Walsh
- Lyell Centre, British Geological Survey, Riccarton,
Edinburgh EH14 4AS, UK
- Ordnance Survey, Explorer House, Adanac Drive,
Southampton SO16 0AS, UK
| | | | - Ian Ross
- Department of Computer Sciences, University of
Wisconsin–Madison, Madison, WI 53706, USA
| | - Shanan E. Peters
- Department of Geoscience, University of
Wisconsin–Madison, Madison, WI 53706, USA
| |
Collapse
|
5
|
Kaiho K, Oshima N. Site of asteroid impact changed the history of life on Earth: the low probability of mass extinction. Sci Rep 2017; 7:14855. [PMID: 29123110 PMCID: PMC5680197 DOI: 10.1038/s41598-017-14199-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 10/06/2017] [Indexed: 12/02/2022] Open
Abstract
Sixty-six million years ago, an asteroid approximately 9 km in diameter hit the hydrocarbon- and sulfur-rich sedimentary rocks in what is now Mexico. Recent studies have shown that this impact at the Yucatan Peninsula heated the hydrocarbon and sulfur in these rocks, forming stratospheric soot and sulfate aerosols and causing extreme global cooling and drought. These events triggered a mass extinction, including dinosaurs, and led to the subsequent macroevolution of mammals. The amount of hydrocarbon and sulfur in rocks varies widely, depending on location, which suggests that cooling and extinction levels were dependent on impact site. Here we show that the probability of significant global cooling, mass extinction, and the subsequent appearance of mammals was quite low after an asteroid impact on the Earth’s surface. This significant event could have occurred if the asteroid hit the hydrocarbon-rich areas occupying approximately 13% of the Earth’s surface. The site of asteroid impact, therefore, changed the history of life on Earth.
Collapse
Affiliation(s)
- Kunio Kaiho
- Department of Earth Science, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan.
| | - Naga Oshima
- Meteorological Research Institute, Tsukuba, 305-0052, Japan
| |
Collapse
|
6
|
Yuan C, Fitzpatrick R, Mosley LM, Marschner P. Sulfate reduction in sulfuric material after re-flooding: Effectiveness of organic carbon addition and pH increase depends on soil properties. JOURNAL OF HAZARDOUS MATERIALS 2015; 298:138-145. [PMID: 26024614 DOI: 10.1016/j.jhazmat.2015.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/30/2015] [Accepted: 05/10/2015] [Indexed: 06/04/2023]
Abstract
Sulfuric material is formed upon oxidation of sulfidic material; it is extremely acidic, and therefore, an environmental hazard. One option for increasing pH of sulfuric material may be stimulation of bacterial sulfate reduction. We investigated the effects of organic carbon addition and pH increase on sulfate reduction after re-flooding in ten sulfuric materials with four treatments: control, pH increase to 5.5 (+pH), organic carbon addition with 2% w/w finely ground wheat straw (+C), and organic carbon addition and pH increase (+C+pH). After 36 weeks, in five of the ten soils, only treatment +C+pH significantly increased the concentration of reduced inorganic sulfur (RIS) compared to the control and increased the soil pore water pH compared to treatment+pH. In four other soils, pH increase or/and organic carbon addition had no significant effect on RIS concentration compared to the control. The RIS concentration in treatment +C+pH as percentage of the control was negatively correlated with soil clay content and initial nitrate concentration. The results suggest that organic carbon addition and pH increase can stimulate sulfate reduction after re-flooding, but the effectiveness of this treatment depends on soil properties.
Collapse
Affiliation(s)
- Chaolei Yuan
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Rob Fitzpatrick
- Acid Sulfate Soils Centre, The University of Adelaide, Adelaide, SA 5005, Australia; CSIRO Land and Water, Private Bag No. 2, Glen Osmond, SA 5064, Australia
| | - Luke M Mosley
- Acid Sulfate Soils Centre, The University of Adelaide, Adelaide, SA 5005, Australia; CSIRO Land and Water, Private Bag No. 2, Glen Osmond, SA 5064, Australia
| | - Petra Marschner
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
7
|
Yuan C, Mosley LM, Fitzpatrick R, Marschner P. Amount of organic matter required to induce sulfate reduction in sulfuric material after re-flooding is affected by soil nitrate concentration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2015; 151:437-442. [PMID: 25600239 DOI: 10.1016/j.jenvman.2015.01.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 01/07/2015] [Accepted: 01/10/2015] [Indexed: 06/04/2023]
Abstract
Acid sulfate soils (ASS) with sulfuric material can be remediated through microbial sulfate reduction stimulated by adding organic matter (OM) and increasing the soil pH to >4.5, but the effectiveness of this treatment is influenced by soil properties. Two experiments were conducted using ASS with sulfuric material. In the first experiment with four ASS, OM (finely ground mature wheat straw) was added at 2-6% (w/w) and the pH adjusted to 5.5. After 36 weeks under flooded conditions, the concentration of reduced inorganic sulfur (RIS) and pore water pH were greater in all treatments with added OM than in the control without OM addition. The RIS concentration increased with OM addition rate. The increase in RIS concentration between 4% and 6% OM was significant but smaller than that between 2% and 4%, suggesting other factors limited sulfate reduction. In the second experiment, the effect of nitrate addition on sulfate reduction at different OM addition rates was investigated in one ASS. Organic matter was added at 2 and 4% and nitrate at 0, 100, and 200 mg nitrate-N kg(-1). After 2 weeks under flooded conditions, soil pH and the concentration of FeS measured as acid volatile sulfur (AVS) were lower with nitrate added at both OM addition rates. At a given nitrate addition rate, pH and AVS concentration were higher at 4% OM than at 2%. It can be concluded that sulfate reduction in ASS at pH 5.5 can be limited by low OM availability and high nitrate concentrations. Further, the inhibitory effect of nitrate can be overcome by high OM addition rates.
Collapse
Affiliation(s)
- Chaolei Yuan
- School of Agriculture, Food & Wine, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Luke M Mosley
- Water Quality Science, PO Box 310, Belair, SA 5052, Australia; Acid Sulfate Soils Centre, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Rob Fitzpatrick
- Acid Sulfate Soils Centre, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Petra Marschner
- School of Agriculture, Food & Wine, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|