1
|
Alvaro-Heredia JA, Rodríguez-Hernández LA, Rodríguez-Rubio HA, Alvaro-Heredia I, Mondragon-Soto MG, Rodríguez-Hernández IA, Mateo-Nouel EDJ, Villanueva-Castro E, Uribe-Pacheco R, Castro-Martinez E, Gutierrez-Aceves GA, Moreno-Jiménez S, Reyes-Moreno I, Gonzalez-Aguilar A. Diagnostic Algorithm for Intracranial Lesions in the Emergency Department: Effectiveness of the Relative Brain Volume and Hounsfield Unit Value Measured by Perfusion Tomography. Cureus 2024; 16:e61591. [PMID: 38962639 PMCID: PMC11221499 DOI: 10.7759/cureus.61591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2024] [Indexed: 07/05/2024] Open
Abstract
Background Early treatment of intracranial lesions in the emergency department is crucial, but it can be challenging to differentiate between them. This differentiation is essential because the treatment of each type of lesion is different. Cerebral computed tomography perfusion (CTP) imaging can help visualize the vascularity of brain lesions and provide absolute quantification of physiological parameters. Compared to magnetic resonance imaging, CTP has several advantages, such as simplicity, wide availability, and reproducibility. Purpose This study aimed to assess the effectiveness of Hounsfield units (HU) in measuring the density of hypercellular lesions and the ability of CTP to quantify hemodynamics in distinguishing intracranial space-occupying lesions. Methods A retrospective study was conducted from March 2016 to March 2022. All patients underwent CTP and CT scans, and relative cerebral blood volume (rCBV) and HU were obtained for intracranial lesions. Results We included a total of 244 patients in our study. This group consisted of 87 (35.7%) individuals with glioblastomas (GBs), 48 (19.7%) with primary central nervous system lymphoma (PCNSL), 45 (18.4%) with metastases (METs), and 64 (26.2) with abscesses. Our study showed that the HUs for METs were higher than those for GB (S 57.4% and E 88.5%). In addition, rCBV values for PCNSL and abscesses were lower than those for GB and METs. The HU in PCNSL was higher than those in abscesses (S 94.1% and E 96.6%). Conclusion PCT parameters provide valuable information for diagnosing brain lesions. A comprehensive assessment improves accuracy. Combining rCBV and HU enhances diagnostic accuracy, making it a valuable tool for distinguishing between lesions. PCT's widespread availability allows for the use of both anatomical and functional information with high spatial resolution for diagnosing and managing brain tumor patients.
Collapse
Affiliation(s)
- Juan Antonio Alvaro-Heredia
- Neurological Surgery, National Institute of Neurology and Neurosurgery, Mexico City, MEX
- Spine Surgery, National Institute of Rehabilitation, Mexico City, MEX
| | | | | | - Isidro Alvaro-Heredia
- Emergency Medicine, National Institute of Neurology and Neurosurgery, Mexico City, MEX
| | | | | | | | | | - Rodrigo Uribe-Pacheco
- Neurological Surgery, National Institute of Neurology and Neurosurgery, Mexico City, MEX
| | | | | | - Sergio Moreno-Jiménez
- Neurosurgery-Radiosurgery, The American British Cowdray (ABC) Medical Center, Mexico City, MEX
- Radiosurgery, National Institute of Neurology and Neurosurgery, Mexico City, MEX
| | - Ignacio Reyes-Moreno
- Neuro-Oncology, The American British Cowdray (ABC) Medical Center, Mexico City, MEX
| | | |
Collapse
|
2
|
Paiva Prudente T, Oliva HNP, Oliva IO, Mezaiko E, Monteiro-Junior RS. Effects of Physical Exercise on Cerebral Blood Velocity in Older Adults: A Systematic Review and Meta-Analysis. Behav Sci (Basel) 2023; 13:847. [PMID: 37887497 PMCID: PMC10604216 DOI: 10.3390/bs13100847] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
As the older population grows, there is an increasing interest in understanding how physical exercise can counteract the changes seen with aging. The benefits of exercise to general health, and especially to the cardiovascular system, have been a topic of discussion for decades. However, there is still a need to elucidate the effects of training programs on the cerebrovascular blood velocity in older people. This systematic review and meta-analysis aimed to investigate the effect of physical exercise on the cerebral blood velocity in older people (PROSPERO CRD42019136305). A search was performed on PubMed, Web of Science, EBSCO, ScienceDirect, and Scopus from the inception of this study to October 2023, retrieving 493 results, of which 26 were included, analyzing more than 1000 participants. An overall moderate risk of bias was found for the studies using the Cochrane risk-of-bias tools for randomized and non-randomized clinical trials. The pooled results of randomized trials showed that older people who underwent physical exercise presented a statistically significant increase in cerebral blood velocity (3.58; 95%CI = 0.51, 6.65; p = 0.02). This result indicates that physical exercise is important to help maintain cerebral health in older adults.
Collapse
Affiliation(s)
- Tiago Paiva Prudente
- School of Medicine, Universidade Federal de Goiás, Goiânia 74690-900, GO, Brazil;
| | - Henrique Nunes Pereira Oliva
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA;
- Postgraduation Programme of Health Sciences, Universidade Estadual de Montes Claros, Montes Claros 39401-089, MG, Brazil
| | - Isabela Oliveira Oliva
- School of Medicine, Centro Universitario FIPMoc (UNIFIPMoc), Montes Claros 39408-007, MG, Brazil;
| | - Eleazar Mezaiko
- School of Dentistry, Universidade Federal de Goiás, Goiânia 74690-900, GO, Brazil;
| | - Renato Sobral Monteiro-Junior
- Postgraduation Programme of Health Sciences, Universidade Estadual de Montes Claros, Montes Claros 39401-089, MG, Brazil
- Postgraduation Programme of Neurology/Neuroscience, Universidade Federal, Niterói 24020-141, RJ, Brazil
- Research and Study Group in Neuroscience, Exercise, Health and Sport—GENESEs, Physical Education Department, Universidade Estadual de Montes Claros, Montes Claros 39401-089, MG, Brazil
| |
Collapse
|
3
|
Badji A, Youwakim J, Cooper A, Westman E, Marseglia A. Vascular cognitive impairment - Past, present, and future challenges. Ageing Res Rev 2023; 90:102042. [PMID: 37634888 DOI: 10.1016/j.arr.2023.102042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Vascular cognitive impairment (VCI) is a lifelong process encompassing a broad spectrum of cognitive disorders, ranging from subtle or mild deficits to prodromal and fully developed dementia, originating from cerebrovascular lesions such as large and small vessel disease. Genetic predisposition and environmental exposure to risk factors such as unhealthy lifestyles, hypertension, cardiovascular disease, and metabolic disorders will synergistically interact, yielding biochemical and structural brain changes, ultimately culminating in VCI. However, little is known about the pathological processes underlying VCI and the temporal dynamics between risk factors and disease mechanisms (biochemical and structural brain changes). This narrative review aims to provide an evidence-based summary of the link between individual vascular risk/disorders and cognitive dysfunction and the potential structural and biochemical pathophysiological processes. We also discuss some key challenges for future research on VCI. There is a need to shift from individual risk factors/disorders to comorbid vascular burden, identifying and integrating imaging and fluid biomarkers, implementing a life-course approach, considering possible neuroprotective influences of positive life exposures, and addressing biological sex at birth and gender differences. Finally, this review highlights the need for future researchers to leverage and integrate multidimensional data to advance our understanding of the mechanisms and pathophysiology of VCI.
Collapse
Affiliation(s)
- Atef Badji
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Jessica Youwakim
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada; Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Montreal, QC, Canada; Groupe de Recherche sur la Signalisation Neuronal et la Circuiterie (SNC), Montreal, QC, Canada
| | - Alexandra Cooper
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Eric Westman
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Anna Marseglia
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
4
|
Witta S, Collins KP, Ramirez DA, Mannheimer JD, Wittenburg LA, Gustafson DL. Vinblastine pharmacokinetics in mouse, dog, and human in the context of a physiologically based model incorporating tissue-specific drug binding, transport, and metabolism. Pharmacol Res Perspect 2023; 11:e01052. [PMID: 36631976 PMCID: PMC9834611 DOI: 10.1002/prp2.1052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
Vinblastine (VBL) is a vinca alkaloid-class cytotoxic chemotherapeutic that causes microtubule disruption and is typically used to treat hematologic malignancies. VBL is characterized by a narrow therapeutic index, with key dose-limiting toxicities being myelosuppression and neurotoxicity. Pharmacokinetics (PK) of VBL is primarily driven by ABCB1-mediated efflux and CYP3A4 metabolism, creating potential for drug-drug interaction. To characterize sources of variability in VBL PK, we developed a physiologically based pharmacokinetic (PBPK) model in Mdr1a/b(-/-) knockout and wild-type mice by incorporating key drivers of PK, including ABCB1 efflux, CYP3A4 metabolism, and tissue-specific tubulin binding, and scaled this model to accurately simulate VBL PK in humans and pet dogs. To investigate the capability of the model to capture interindividual variability in clinical data, virtual populations of humans and pet dogs were generated through Monte Carlo simulation of physiologic and biochemical parameters and compared to the clinical PK data. This model provides a foundation for predictive modeling of VBL PK. The base PBPK model can be further improved with supplemental experimental data identifying drug-drug interactions, ABCB1 polymorphisms and expression, and other sources of physiologic or metabolic variability.
Collapse
Affiliation(s)
- Sandra Witta
- Flint Animal Cancer CenterColorado State UniversityFort CollinsColoradoUSA
- School of Biomedical EngineeringColorado State UniversityFort CollinsColoradoUSA
| | - Keagan P. Collins
- Flint Animal Cancer CenterColorado State UniversityFort CollinsColoradoUSA
- School of Biomedical EngineeringColorado State UniversityFort CollinsColoradoUSA
| | | | - Joshua D. Mannheimer
- Flint Animal Cancer CenterColorado State UniversityFort CollinsColoradoUSA
- School of Biomedical EngineeringColorado State UniversityFort CollinsColoradoUSA
| | - Luke A. Wittenburg
- Department of Surgical and Radiological SciencesUniversity of CaliforniaDavisCaliforniaUSA
- University of CaliforniaDavis Comprehensive Cancer CenterSacramentoCaliforniaUSA
| | - Daniel L. Gustafson
- Flint Animal Cancer CenterColorado State UniversityFort CollinsColoradoUSA
- School of Biomedical EngineeringColorado State UniversityFort CollinsColoradoUSA
- Developmental Therapeutics ProgramUniversity of Colorado Cancer CenterAuroraColoradoUSA
- Department of Clinical SciencesColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
5
|
Khalili N, Wang R, Garg T, Ahmed A, Hoseinyazdi M, Sair HI, Luna LP, Intrapiromkul J, Deng F, Yedavalli V. Clinical application of brain perfusion imaging in detecting stroke mimics: A review. J Neuroimaging 2023; 33:44-57. [PMID: 36207276 DOI: 10.1111/jon.13061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 02/01/2023] Open
Abstract
Stroke mimics constitute a significant proportion of patients with suspected acute ischemic stroke. These conditions may resemble acute ischemic stroke and demonstrate abnormalities on perfusion imaging sequences. The most common stroke mimics include seizure/epilepsy, migraine with aura, brain tumors, functional disorders, infectious encephalopathies, Wernicke's encephalopathy, and metabolic abnormalities. Brain perfusion imaging techniques, particularly computed tomography perfusion and magnetic resonance perfusion, are being widely used in routine clinical practice for treatment selection in patients presenting with large vessel occlusion. At the same time, the utilization of these imaging modalities enables the opportunity to better diagnose patients with stroke mimics in a time-sensitive setting, leading to appropriate management, decision-making, and resource allocation. In this review, we describe patterns of perfusion abnormalities that could discriminate patients with stroke mimics from those with acute ischemic stroke and provide specific case examples to illustrate these perfusion abnormalities. In addition, we discuss the challenges associated with interpretation of perfusion images in stroke-related pathologies. In general, perfusion imaging can provide additional information in some cases-when used in combination with conventional magnetic resonance imaging and computed tomography-and might help in detecting stroke mimics among patients who present with acute onset focal neurological symptoms.
Collapse
Affiliation(s)
- Neda Khalili
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Richard Wang
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Tushar Garg
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Amara Ahmed
- Department of Radiology, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Meisam Hoseinyazdi
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Haris I Sair
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Licia P Luna
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Jarunee Intrapiromkul
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Francis Deng
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Vivek Yedavalli
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Zhang Y, Ye J, Jiao Y, Zhang W, Zhang T, Tian X, Shi X, Fu F, Wang L, Xu C. A pilot study of contrast-enhanced electrical impedance tomography for real-time imaging of cerebral perfusion. Front Neurosci 2022; 16:1027948. [PMID: 36507353 PMCID: PMC9729948 DOI: 10.3389/fnins.2022.1027948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
Background Real-time detection of cerebral blood perfusion can prevent adverse reactions, such as cerebral infarction and neuronal apoptosis. Our previous clinical trial have shown that the infusion of therapeutic fluid can significantly change the impedance distribution in the brain. However, whether this alteration implicates the cerebral blood perfusion remains unclear. To explore the feasibility of monitoring cerebral blood perfusion, the present pilot study established a novel cerebral contrast-enhanced electrical impedance tomography (C-EIT) technique. Materials and methods Rabbits were randomly divided into two groups: the internal carotid artery non-occlusion (ICAN) and internal carotid artery occlusion (ICAO) groups. Both of groups were injected with glucose, an electrical impedance-enhanced contrast agent, through the right internal carotid artery under EIT monitoring. The C-EIT reconstruction images of the rabbits brain were analyzed according to the collected raw data. The paired and independent t-tests were used to analyze the remodeled impedance values of the left and right cerebral hemispheres within and between studied groups, respectively. Moreover, pathological examinations of brain were performed immediately after C-EIT monitoring. Results According to the reconstructed images, the impedance value of the left cerebral hemisphere in the ICAN group did not change significantly, whereas the impedance value of the right cerebral hemisphere gradually increased, reaching a peak at approximately 10 s followed by gradually decreased. In the ICAO group, the impedance values of both cerebral hemispheres increased gradually and then began to decrease after reaching the peak value. According to the paired t-test, there was a significant difference (P < 0.001) in the remodeling impedance values between the left and right hemispheres in the ICAN group, and there was also a significant difference (P < 0.001) in the ICAO group. According to the independent t-test, there was a significant difference (P < 0.001) of the left hemispheres between the ICAN and ICAO groups. Conclusion The cerebral C-EIT proposed in this pilot study can reflect cerebral blood perfusion. This method has potential in various applications in the brain in the future, including disease progression monitoring, collateral circulation judgment, tumor-specific detection, and brain function research.
Collapse
Affiliation(s)
- Yuyan Zhang
- College of Life Sciences, Northwest University, Xi’an, China
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Xi’an, China
| | - Jian’an Ye
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Xi’an, China
| | - Yang Jiao
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi’an, China
| | - Weirui Zhang
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Xi’an, China
| | - Tao Zhang
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Xi’an, China
| | - Xiang Tian
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Xi’an, China
| | - Xuetao Shi
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Xi’an, China
| | - Feng Fu
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Xi’an, China
| | - Liang Wang
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi’an, China
| | - Canhua Xu
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Xi’an, China
| |
Collapse
|
7
|
Delvecchio G, Gritti D, Squarcina L, Brambilla P. Neurovascular alterations in bipolar disorder: A review of perfusion weighted magnetic resonance imaging studies. J Affect Disord 2022; 316:254-272. [PMID: 35940377 DOI: 10.1016/j.jad.2022.07.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 07/08/2022] [Accepted: 07/22/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Bipolar Disorder (BD) is a severe chronic psychiatric disorder whose aetiology is still largely unknown. However, increasing literature reported the involvement of neurovascular factors in the pathophysiology of BD, suggesting that a measure of Cerebral Blood Flow (CBF) could be an important biomarker of the illness. Therefore, since, to date, Magnetic Resonance Perfusion Weighted Imaging (PWI) techniques, such as Dynamic Susceptibility Contrast (DSC) and Arterial Spin Labelling (ASL), are the most common approaches that allow non-invasive in-vivo perfusion measurements,this review aims to summarize the results from all PWI studies that evaluated the CBF in BD. METHODS A bibliographic search in PubMed up until May 2021 was performed. 16 PWI studies that used DSC or ASL sequences met our inclusion criteria. RESULTS Overall, the results supported the presence of hyper-perfusion in the cingulate cortex and fronto-temporal regions, as well as the presence of hypo-perfusion in the cerebellum in BD, compared with both healthy controls and patients with unipolar depression. CBF changes after cognitive and aerobic training, as well as in relation with other physiological, clinical, and neurocognitive variables were also reported. LIMITATIONS The heterogeneity across the studies, in terms of experimental designs, sample selection, and methodological approach employed, limited the studies' comparison. CONCLUSIONS These findings showed CBF alterations in the cingulate cortex, fronto-temporal regions, and cerebellum in BD, suggesting that CBF may be an important pathophysiological marker of BD that merits further investigation to clarify the extent of neurovascular alterations.
Collapse
Affiliation(s)
- Giuseppe Delvecchio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.
| | - Davide Gritti
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Letizia Squarcina
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
8
|
Kilic M, Scalzo F, Lyle C, Baldaranov D, Dirnbacher M, Honda T, Liebeskind DS, Schlachetzki F. A mobile battery-powered brain perfusion ultrasound (BPU) device designed for prehospital stroke diagnosis: correlation to perfusion MRI in healthy volunteers. Neurol Res Pract 2022; 4:13. [PMID: 35399083 PMCID: PMC8996400 DOI: 10.1186/s42466-022-00179-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/11/2022] [Indexed: 12/07/2022] Open
Abstract
BACKGROUND Early prehospital stroke identification is crucial for goal directed hospital admission especially in rural areas. However, clinical prehospital stroke scales are designed to identify any stroke but cannot sufficiently differentiate hemorrhagic from ischemic stroke, including large vessel occlusion (LVO) amenable to mechanical thrombectomy. We report on a novel small, portable and battery driven point-of-care ultrasound system (SONAS®) specifically developed for mobile non-invasive brain perfusion ultrasound (BPU) measurement after bolus injection of an echo-enhancing agent suitable for the use in prehospital stroke diagnosis filling a current, unmet and critical need for LVO identification. METHODS In a phase I study of healthy volunteers we performed comparative perfusion-weighted magnetic resonance imaging (PWI) and BPU measurements, including safety analysis. RESULTS Twelve volunteers (n = 7 females, n = 5 males, age ranging between 19 and 55 years) tolerated the measurement extremely well including analysis of blood-brain barrier integrity, and the correlation coefficient between the generated time kinetic curves after contrast agent bolus between PWI and BPU transducers ranged between 0.89 and 0.76. CONCLUSIONS Mobile BPU using the SONAS® device is feasible and safe with results comparable to PWI. When applied in conjunction with prehospital stroke scales this may lead to a more accurate stroke diagnosis and patients bypassing regular stroke units to comprehensive stroke centers. Further studies are needed in acute stroke patients and in the prehospital phase including assessment of immediate and long-term morbidity and mortality in stroke. TRIAL REGISTRATION Clinical trials.gov, registered 28.Sep.2017, Identifier: NCT03296852.
Collapse
Affiliation(s)
- Mustafa Kilic
- Department of Neurology, Center for Vascular Neurology and Intensive Care, University of Regensburg, medbo Bezirksklinikum Regensburg, Universitaetsstr.84, 93053, Regensburg, Germany
| | - Fabien Scalzo
- Department of Neurology, UCLA Stroke Center and Brain Research Institute, 635 Charles E Young Drive South, Suite 116, Los Angeles, CA, 90095, USA
| | - Chandler Lyle
- BURL Concepts, Inc., 4901 Morena Boulevard Suite 703, San Diego, CA, 92117, USA
| | - Dobri Baldaranov
- Department of Neurology, Center for Vascular Neurology and Intensive Care, University of Regensburg, medbo Bezirksklinikum Regensburg, Universitaetsstr.84, 93053, Regensburg, Germany
- Alzheimer's Therapeutic Research Institute, Keck School of Medicine, University of Southern California, 9860 Mesa Rim Road, San Diego, CA, 92121, USA
| | | | - Tristan Honda
- Department of Neurology, Neurovascular Imaging Research Core and UCLA Stroke Center, University of California Los Angeles, Ronald Reagan UCLA Medical Center, 300 Medical Plaza Driveway B200, Los Angeles, CA, 90095, USA
| | - David S Liebeskind
- Department of Neurology, Neurovascular Imaging Research Core and UCLA Stroke Center, University of California Los Angeles, Ronald Reagan UCLA Medical Center, 300 Medical Plaza Driveway B200, Los Angeles, CA, 90095, USA
| | - Felix Schlachetzki
- Department of Neurology, Center for Vascular Neurology and Intensive Care, University of Regensburg, medbo Bezirksklinikum Regensburg, Universitaetsstr.84, 93053, Regensburg, Germany.
| |
Collapse
|
9
|
Bianchi L, Cavarzan F, Ciampitti L, Cremonesi M, Grilli F, Saccomandi P. Thermophysical and mechanical properties of biological tissues as a function of temperature: a systematic literature review. Int J Hyperthermia 2022; 39:297-340. [DOI: 10.1080/02656736.2022.2028908] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Leonardo Bianchi
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | - Fabiana Cavarzan
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | - Lucia Ciampitti
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | - Matteo Cremonesi
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | - Francesca Grilli
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | - Paola Saccomandi
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
10
|
Pan W, Zhuang W, Chong Y, Qin M, Li Y, Xiao J, Wang Q, Zhang S, Zhao S, Zhao P. Noninvasive real-time detection of cerebral blood perfusion in hemorrhagic shock rabbits based on whole-brain magnetic induction phase shift: an experimental study. Physiol Meas 2020; 41:095004. [PMID: 32759483 DOI: 10.1088/1361-6579/abad12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE This study aimed to perform experiments to investigate the change trend in brain magnetic induction phase shift (MIPS) during hemorrhagic shock of different degrees of severity and to find the correlation between brain MIPS value and commonly used physiological indicators for detecting shock so as to explore a noninvasive method suitable for prehospital real-time detection of cerebral blood perfusion in hemorrhagic shock. APPROACH The self-developed MIPS detection system was used to monitor the brain MIPS value in the whole process of hemorrhagic shock models of rabbits with different degrees of severity (control, mild, moderate, and severe) of shock in real time. Meanwhile, common physiological parameters, including arterial blood lactate (ABL), mean arterial pressure (MAP), heart rate (HR),core body temperature (CBT), regional cerebral blood flow (rCBF), and electroencephalogram (EEG), were also evaluated. MAIN RESULTS The findings suggested that the brain MIPS value showed a downward trend in the shock process, and the decline degree of the MIPS value positively correlated with the severity of shock. Moreover, it showed a good detection and resolution ability in time/process and severity (P < 0.05). The MIPS values significantly correlated with ABL (P < 0.01), CBT (P < 0.01), and EEG (P < 0.05) at all four shock levels; with MAP (P < 0.05) and rCBF (P < 0.05) in the control, moderate, and severe groups; and with HR (P < 0.01) only in the severe group. SIGNIFICANCE The results demonstrated that the brain MIPS value has the capability of detecting hemorrhagic shock. The MIPS technique is a noninvasive method suitable for prehospital real-time detection of cerebral blood perfusion in hemorrhagic shock.
Collapse
Affiliation(s)
- Wencai Pan
- Department of Medical Engineering, Xinqiao Hospital, Army Medical University, Chongqing 400037, People's Republic of China. These authors contributed equally to this work
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Li X, Johnson CP, Ellermann J. 7T bone perfusion imaging of the knee using arterial spin labeling MRI. Magn Reson Med 2019; 83:1577-1586. [PMID: 31872919 DOI: 10.1002/mrm.28142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/06/2019] [Accepted: 12/02/2019] [Indexed: 01/01/2023]
Abstract
PURPOSE To evaluate the feasibility of arterial spin labeling (ASL) imaging of epiphyseal bone marrow in the distal femoral condyle of the knee at 7T MRI. METHODS The knees of 7 healthy volunteers were imaged with ASL using a 7T whole body MRI scanner and a 28-channel knee coil. ASL imaging used a flow-sensitive alternating inversion recovery method for labeling and a single-shot fast spin echo sequence for image readout. ASL imaging with a single oblique transverse slice was performed at 2 slice positions in the distal femoral condyle. Blood flow was measured in 2 regions of interest: the epiphyseal bone marrow and the overlying patellofemoral cartilage. To analyze perfusion SNR, 200 noise images were also acquired using the same ASL imaging protocol with RF pulses turned off. RESULTS Knee bone marrow perfusion imaging was successfully performed with all volunteers. The overall mean of blood flow in the knee bone marrow was 32.90 ± 2.41 mL/100 g/min, and the blood flow was higher at the more distal slice position. We observed significant B0 and B 1 + inhomogeneities, which need to be addressed in the future to improve the quality of ASL imaging and increase the reliability of knee bone marrow perfusion measurements. CONCLUSION Bone marrow perfusion imaging of the distal femoral condyle is feasible using ASL at 7T. Further technical development is needed to improve the ASL method to overcome existing challenges.
Collapse
Affiliation(s)
- Xiufeng Li
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Casey P Johnson
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Jutta Ellermann
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
12
|
Ultra-low-dose multiphase CT angiography derived from CT perfusion data in patients with middle cerebral artery stenosis. Neuroradiology 2019; 62:167-174. [PMID: 31673747 DOI: 10.1007/s00234-019-02313-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 10/16/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE Computed tomography (CT) perfusion (CTP) source images contain both brain perfusion and cerebrovascular information, and may allow a dynamic assessment of collaterals. The purpose of the study was to compare the image quality and the collaterals identified on multiphase CT angiography (CTA) derived from CTP datasets (hereafter called CTPA) reconstructed with iterative model reconstruction (IMR) algorithm in patients with middle cerebral artery (MCA) steno-occlusion with those of routine CTA. METHODS Consecutive patients with a unilateral MCA steno-occlusion underwent non-contrast CT (NCCT), CTP, and CTA. CTPA images were reconstructed from CTP datasets. The vascular attenuation, image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) of routine CTA and CTPA were measured and analyzed by Student's t test. Subjective image quality and collaterals were scored and compared using the Wilcoxon signed-rank test. RESULTS Fifty-eight patients (mean age 61.7 years, 78% males, median National Institutes of Health Stroke Scale score = 12) were included. The effective radiation dose of CTP was 1.28 mSv. The vascular attenuation, SNR, CNR, and the image quality of CTPA were considerably higher than that of CTA (all, p < 0.001). Collaterals were rated higher on CTPA compared with CTA (1.79 ± 0.64 vs. 1.22 ± 0.84, p < 0.001). Fifty-three percent of patients with poor collaterals assessed on single-phase CTA had good collaterals on CTPA. CONCLUSION CTPA derived from CTP datasets reconstructed with IMR algorithm offers image quality comparable to routine CTA and provides time-resolved evaluation of collaterals in patients with MCA ischemic disease.
Collapse
|
13
|
Teleanu DM, Chircov C, Grumezescu AM, Volceanov A, Teleanu RI. Contrast Agents Delivery: An Up-to-Date Review of Nanodiagnostics in Neuroimaging. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E542. [PMID: 30987211 PMCID: PMC6523665 DOI: 10.3390/nano9040542] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 12/14/2022]
Abstract
Neuroimaging is a highly important field of neuroscience, with direct implications for the early diagnosis and progression monitoring of brain-associated diseases. Neuroimaging techniques are categorized into structural, functional and molecular neuroimaging, each possessing advantages and disadvantages in terms of resolution, invasiveness, toxicity of contrast agents and costs. Nanotechnology-based approaches for neuroimaging mostly involve the development of nanocarriers for incorporating contrast agents or the use of nanomaterials as imaging agents. Inorganic and organic nanoparticles, liposomes, micelles, nanobodies and quantum dots are some of the most studied candidates for the delivery of contrast agents for neuroimaging. This paper focuses on describing the conventional modalities used for imaging and the applications of nanotechnology for developing novel strategies for neuroimaging. The aim is to highlight the roles of nanocarriers for enhancing and/or overcome the limitations associated with the most commonly utilized neuroimaging modalities. For future directions, several techniques that could benefit from the increased contrast induced by using imaging probes are presented.
Collapse
Affiliation(s)
- Daniel Mihai Teleanu
- Emergency University Hospital, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Cristina Chircov
- Faculty of Engineering in Foreign Languages, Politehnica University of Bucharest, 060042 Bucharest, Romania.
- Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania.
| | - Alexandru Mihai Grumezescu
- Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania.
- ICUB - Research Institute of University of Bucharest, University of Bucharest, 36-46 M. Kogalniceanu Blvd., Bucharest 050107, Romania.
| | - Adrian Volceanov
- Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania.
| | - Raluca Ioana Teleanu
- "Victor Gomoiu" Clinical Children's Hospital, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| |
Collapse
|
14
|
Yao Q, Zhang L, Zhou J, Li M, Jing W, Li X, Han J, He L, Zhang Y. Imaging Diagnosis of Transient Ischemic Attack in Clinic and Traditional Chinese Medicine. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5094842. [PMID: 30906774 PMCID: PMC6398052 DOI: 10.1155/2019/5094842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/04/2019] [Accepted: 02/02/2019] [Indexed: 11/18/2022]
Abstract
Neuroimaging plays a pivotal role in Transient Ischemic Attack (TIA). Generally, clinicians focus on the specific changes in morphology and function, but the diagnosis of TIA often depends on imaging evidence. Whereas Traditional Chinese Medicine (TCM) is concerned with the performance of clinical symptoms, they began to use imaging methods to diagnose TIA. CT and MRI are the recommended modality to diagnose TIA and image ischemic lesions. In addition, Transcranial Doppler sonography (TCD) and Digital Subtraction Angiography (DSA) are two acceptable alternatives for diagnosing TIA patients. This article elaborates the update of imaging modalities in clinic and the development of imaging modalities in TCM. Besides, multiple joint imaging technologies also will be evaluated whether enhanced diagnostic yields availably.
Collapse
Affiliation(s)
- Qigu Yao
- Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lincheng Zhang
- Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jing Zhou
- College of Life Sciences of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Min Li
- College of Life Sciences of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Weifeng Jing
- College of Pharmaceutical Science of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaohong Li
- College of Pharmaceutical Science of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jin Han
- Basic Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lan He
- Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yuyan Zhang
- College of Life Sciences of Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
15
|
Overview and Critical Appraisal of Arterial Spin Labelling Technique in Brain Perfusion Imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:5360375. [PMID: 29853806 PMCID: PMC5964483 DOI: 10.1155/2018/5360375] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/11/2018] [Indexed: 12/02/2022]
Abstract
Arterial spin labelling (ASL) allows absolute quantification of CBF via a diffusible intrinsic tracer (magnetically labelled blood water) that disperses from the vascular system into neighbouring tissue. Thus, it can provide absolute CBF quantification, which eliminates the need for the contrast agent, and can be performed repeatedly. This review will focus on the common ASL acquisition techniques (continuous, pulsed, and pseudocontinuous ASL) and how ASL image quality might be affected by intrinsic factors that may bias the CBF measurements. We also provide suggestions to mitigate these risks, model appropriately the acquired signal, increase the image quality, and hence estimate the reliability of the CBF, which consists an important noninvasive biomarker. Emerging methodologies for extraction of new ASL-based biomarkers, such as arterial arrival time (AAT) and arterial blood volume (aBV), will be also briefly discussed.
Collapse
|