1
|
Ricci A, Rubino E, Serra GP, Wallén-Mackenzie Å. Concerning neuromodulation as treatment of neurological and neuropsychiatric disorder: Insights gained from selective targeting of the subthalamic nucleus, para-subthalamic nucleus and zona incerta in rodents. Neuropharmacology 2024; 256:110003. [PMID: 38789078 DOI: 10.1016/j.neuropharm.2024.110003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/26/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Neuromodulation such as deep brain stimulation (DBS) is advancing as a clinical intervention in several neurological and neuropsychiatric disorders, including Parkinson's disease, dystonia, tremor, and obsessive-compulsive disorder (OCD) for which DBS is already applied to alleviate severely afflicted individuals of symptoms. Tourette syndrome and drug addiction are two additional disorders for which DBS is in trial or proposed as treatment. However, some major remaining obstacles prevent this intervention from reaching its full therapeutic potential. Side-effects have been reported, and not all DBS-treated individuals are relieved of their symptoms. One major target area for DBS electrodes is the subthalamic nucleus (STN) which plays important roles in motor, affective and associative functions, with impact on for example movement, motivation, impulsivity, compulsivity, as well as both reward and aversion. The multifunctionality of the STN is complex. Decoding the anatomical-functional organization of the STN could enhance strategic targeting in human patients. The STN is located in close proximity to zona incerta (ZI) and the para-subthalamic nucleus (pSTN). Together, the STN, pSTN and ZI form a highly heterogeneous and clinically important brain area. Rodent-based experimental studies, including opto- and chemogenetics as well as viral-genetic tract tracings, provide unique insight into complex neuronal circuitries and their impact on behavior with high spatial and temporal precision. This research field has advanced tremendously over the past few years. Here, we provide an inclusive review of current literature in the pre-clinical research fields centered around STN, pSTN and ZI in laboratory mice and rats; the three highly heterogeneous and enigmatic structures brought together in the context of relevance for treatment strategies. Specific emphasis is placed on methods of manipulation and behavioral impact.
Collapse
Affiliation(s)
- Alessia Ricci
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Eleonora Rubino
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Gian Pietro Serra
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Åsa Wallén-Mackenzie
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
2
|
Prasad AA, Wallén-Mackenzie Å. Architecture of the subthalamic nucleus. Commun Biol 2024; 7:78. [PMID: 38200143 PMCID: PMC10782020 DOI: 10.1038/s42003-023-05691-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
The subthalamic nucleus (STN) is a major neuromodulation target for the alleviation of neurological and neuropsychiatric symptoms using deep brain stimulation (DBS). STN-DBS is today applied as treatment in Parkinson´s disease, dystonia, essential tremor, and obsessive-compulsive disorder (OCD). STN-DBS also shows promise as a treatment for refractory Tourette syndrome. However, the internal organization of the STN has remained elusive and challenges researchers and clinicians: How can this small brain structure engage in the multitude of functions that renders it a key hub for therapeutic intervention of a variety of brain disorders ranging from motor to affective to cognitive? Based on recent gene expression studies of the STN, a comprehensive view of the anatomical and cellular organization, including revelations of spatio-molecular heterogeneity, is now possible to outline. In this review, we focus attention to the neurobiological architecture of the STN with specific emphasis on molecular patterns discovered within this complex brain area. Studies from human, non-human primate, and rodent brains now reveal anatomically defined distribution of specific molecular markers. Together their spatial patterns indicate a heterogeneous molecular architecture within the STN. Considering the translational capacity of targeting the STN in severe brain disorders, the addition of molecular profiling of the STN will allow for advancement in precision of clinical STN-based interventions.
Collapse
Affiliation(s)
- Asheeta A Prasad
- University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, NSW, Australia.
| | | |
Collapse
|
3
|
Illes J, Lipsman N, McDonald PJ, Hrincu V, Chandler J, Fasano A, Giacobbe P, Hamani C, Ibrahim GM, Kiss Z, Meng Y, Sankar T, Weise L. From vision to action: Canadian leadership in ethics and neurotechnology. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 159:241-273. [PMID: 34446249 DOI: 10.1016/bs.irn.2021.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This chapter explores the complex neuroethical aspects of neurosurgery and neuromodulation in the context of Canadian healthcare and innovation, as seen through the lens of the Pan Canadian Neurotechnology Ethics Consortium (PCNEC). Highlighted are key areas of ethical focus, each with its own unique challenges: technical advances, readiness and risk, vulnerable populations, medico-legal issues, training, and research. Through an exploration of Canadian neurotechnological practice from these various clusters, we provide a critical review of progress, describe opportunities to address areas of debate, and seek to foster ethical innovation. Underpinning this comprehensive review are the fundamental principles of solution-oriented, practical neuroethics, with beneficence and justice at the core. In our view, it is a moral imperative that neurotechnological advancements include a delineation of ethical priorities for future guidelines, oversight, and interactions.
Collapse
Affiliation(s)
- Judy Illes
- Neuroethics Canada, Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - Nir Lipsman
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Patrick J McDonald
- Neuroethics Canada, Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada; Division of Neurosurgery, Department of Surgery, BC Children's Hospital, Vancouver, BC, Canada
| | - Viorica Hrincu
- Neuroethics Canada, Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jennifer Chandler
- University of Ottawa, Centre for Health Law, Policy and Ethics, Ottawa, ON, Canada
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, ON, Canada; Division of Neurology, University of Toronto, Toronto, ON, Canada; Krembil Brain Institute, Toronto, ON, Canada; Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| | - Peter Giacobbe
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Clement Hamani
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - George M Ibrahim
- Division of Neurosurgery, Hospital for Sick Children and Toronto Western Hospital, Toronto, ON, Canada
| | - Zelma Kiss
- Hotchkiss Brain Institute, Departments of Psychiatry and Clinical Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Ying Meng
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Tejas Sankar
- Division of Neurosurgery, University of Alberta, Edmonton, AB, Canada
| | - Lutz Weise
- Department of Neurosurgery, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
4
|
Long LL, Podurgiel SJ, Haque AF, Errante EL, Chrobak JJ, Salamone JD. Subthalamic and Cortical Local Field Potentials Associated with Pilocarpine-Induced Oral Tremor in the Rat. Front Behav Neurosci 2016; 10:123. [PMID: 27378874 PMCID: PMC4911403 DOI: 10.3389/fnbeh.2016.00123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/01/2016] [Indexed: 11/13/2022] Open
Abstract
Tremulous jaw movements (TJMs) are rapid vertical deflections of the lower jaw that resemble chewing but are not directed at any particular stimulus. In rodents, TJMs are induced by neurochemical conditions that parallel those seen in human Parkinsonism, including neurotoxic or pharmacological depletion of striatal dopamine (DA), DA antagonism, and cholinomimetic administration. Moreover, TJMs in rodents can be attenuated by antiparkinsonian agents, including levodopa (L-DOPA), DA agonists, muscarinic antagonists, and adenosine A2A antagonists. In human Parkinsonian patients, exaggerated physiological synchrony is seen in the beta frequency band in various parts of the cortical/basal ganglia/thalamic circuitry, and activity in the tremor frequency range (3–7 Hz) also has been recorded. The present studies were undertaken to determine if tremor-related local field potential (LFP) activity could be recorded from motor cortex (M1) or subthalamic nucleus (STN) during the TJMs induced by the muscarinic agonist pilocarpine, which is a well-known tremorogenic agent. Pilocarpine induced a robust TJM response that was marked by rhythmic electromyographic (EMG) activity in the temporalis muscle. Compared to periods with no tremor activity, TJM epochs were characterized by increased LFP activity in the tremor frequency range in both neocortex and STN. Tremor activity was not associated with increased synchrony in the beta frequency band. These studies identified tremor-related LFP activity in parts of the cortical/basal ganglia circuitry that are involved in the pathophysiology of Parkinsonism. This research may ultimately lead to identification of the oscillatory neural mechanisms involved in the generation of tremulous activity, and promote development of novel treatments for tremor disorders.
Collapse
Affiliation(s)
- Lauren L Long
- Department of Psychological Sciences, University of Connecticut Storrs, CT, USA
| | | | - Aileen F Haque
- Department of Psychological Sciences, University of Connecticut Storrs, CT, USA
| | - Emily L Errante
- Department of Psychological Sciences, University of Connecticut Storrs, CT, USA
| | - James J Chrobak
- Department of Psychological Sciences, University of Connecticut Storrs, CT, USA
| | - John D Salamone
- Department of Psychological Sciences, University of Connecticut Storrs, CT, USA
| |
Collapse
|
5
|
Heo MS, Moon HS, Kim HC, Park HW, Lim YH, Paek SH. Fully Implantable Deep Brain Stimulation System with Wireless Power Transmission for Long-term Use in Rodent Models of Parkinson's Disease. J Korean Neurosurg Soc 2015; 57:152-8. [PMID: 25810853 PMCID: PMC4373042 DOI: 10.3340/jkns.2015.57.3.152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 09/23/2014] [Accepted: 10/25/2014] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE The purpose of this study to develop new deep-brain stimulation system for long-term use in animals, in order to develop a variety of neural prostheses. METHODS Our system has two distinguished features, which are the fully implanted system having wearable wireless power transfer and ability to change the parameter of stimulus parameter. It is useful for obtaining a variety of data from a long-term experiment. RESULTS To validate our system, we performed pre-clinical test in Parkinson's disease-rat models for 4 weeks. Through the in vivo test, we observed the possibility of not only long-term implantation and stability, but also free movement of animals. We confirmed that the electrical stimulation neither caused any side effect nor damaged the electrodes. CONCLUSION We proved possibility of our system to conduct the long-term pre-clinical test in variety of parameter, which is available for development of neural prostheses.
Collapse
Affiliation(s)
- Man Seung Heo
- Interdisciplinary Program, Bioengineering Major, Graduate School, Seoul National University, Seoul, Korea
| | - Hyun Seok Moon
- Interdisciplinary Program, Bioengineering Major, Graduate School, Seoul National University, Seoul, Korea
| | - Hee Chan Kim
- Interdisciplinary Program, Bioengineering Major, Graduate School, Seoul National University, Seoul, Korea. ; Department of Biomedical Engineering, College of Medicine and Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul, Korea
| | - Hyung Woo Park
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| | - Young Hoon Lim
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| | - Sun Ha Paek
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
6
|
Deep brain stimulation of the nucleus accumbens shell induces anti-obesity effects in obese rats with alteration of dopamine neurotransmission. Neurosci Lett 2015; 589:1-6. [DOI: 10.1016/j.neulet.2015.01.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/06/2015] [Accepted: 01/07/2015] [Indexed: 11/18/2022]
|
7
|
Collins-Praino LE, Paul NE, Ledgard F, Podurgiel SJ, Kovner R, Baqi Y, Müller CE, Senatus PB, Salamone JD. Deep brain stimulation of the subthalamic nucleus reverses oral tremor in pharmacological models of parkinsonism: interaction with the effects of adenosine A2Aantagonism. Eur J Neurosci 2013; 38:2183-91. [DOI: 10.1111/ejn.12212] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/03/2013] [Accepted: 03/04/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Lyndsey E. Collins-Praino
- Division of Behavioral Neuroscience; Department of Psychology; University of Connecticut; Storrs; CT; USA
| | - Nicholas E. Paul
- Division of Behavioral Neuroscience; Department of Psychology; University of Connecticut; Storrs; CT; USA
| | - Felicia Ledgard
- Division of Neurosurgery; Department of Surgery; University of Connecticut Health Center; Farmington; CT; USA
| | - Samantha J. Podurgiel
- Division of Behavioral Neuroscience; Department of Psychology; University of Connecticut; Storrs; CT; USA
| | - Rotem Kovner
- Division of Behavioral Neuroscience; Department of Psychology; University of Connecticut; Storrs; CT; USA
| | - Younis Baqi
- Pharma-Zentrum Bonn; Pharmazeutisches Institut, Pharmazeutische Chemie; Universität Bonn; Bonn; Germany
| | - Christa E. Müller
- Pharma-Zentrum Bonn; Pharmazeutisches Institut, Pharmazeutische Chemie; Universität Bonn; Bonn; Germany
| | - Patrick B. Senatus
- Division of Neurosurgery; Department of Surgery; University of Connecticut Health Center; Farmington; CT; USA
| | - John D. Salamone
- Division of Behavioral Neuroscience; Department of Psychology; University of Connecticut; Storrs; CT; USA
| |
Collapse
|