1
|
Chang R, Peng J, Chen Y, Liao H, Zhao S, Zou J, Tan S. Deep Brain Stimulation in Drug Addiction Treatment: Research Progress and Perspective. Front Psychiatry 2022; 13:858638. [PMID: 35463506 PMCID: PMC9022905 DOI: 10.3389/fpsyt.2022.858638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Drug addiction is a chronic psychiatric disorder characterized by compulsive drug-seeking and drug-using behavior, and a tremendous socioeconomic burden to society. Current pharmacological and psychosocial methods have shown limited treatment effects for substance abuse. Deep Brain Stimulation (DBS) is a novel treatment for psychiatric disease and has gradually gained popularity in the treatment of addiction. Addiction is characterized by neuroplastic changes in the nucleus accumbens (NAc), a key structure in the brain reward system, and DBS in this region has shown promising treatment effects. In this paper, the research progress on DBS for drug addiction has been reviewed. Specifically, we discuss the mechanism of NAc DBS for addiction treatment and summarize the results of clinical trials on DBS treatment for addiction to psychoactive substances such as nicotine, alcohol, cocaine, opioids and methamphetamine/amphetamine. In addition, the treatment effects of DBS in other brain regions, such as the substantia nigra pars reticulata (SNr) and insula are discussed.
Collapse
Affiliation(s)
- Rui Chang
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang, China
| | - Jionghong Peng
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang, China
| | - Yunfan Chen
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang, China
| | - Hailin Liao
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang, China
| | - Size Zhao
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang, China
| | - Ju Zou
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang, China
| | - Sijie Tan
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
2
|
Deng H, Yue JK, Wang DD. Trends in safety and cost of deep brain stimulation for treatment of movement disorders in the United States: 2002-2014. Br J Neurosurg 2020; 35:57-64. [PMID: 32476485 DOI: 10.1080/02688697.2020.1759776] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE Deep brain stimulation (DBS) is being increasingly utilized to treat movement disorders including Parkinson's disease (PD), essential tremor (ET), and dystonia. An improved understanding of national trends in safety and cost is necessary. Herein, our objectives are to (1) characterize complication, mortality, and cost profiles of patients undergoing DBS for movement disorders in the United States, (2) identify predictors of morbidity and mortality, and (3) evaluate impact of complications on cost. METHODS DBS surgeries were extracted from the National Inpatient Sample (NIS) 2002-2014 for the clinical indications of PD, ET, and dystonia. Patient characteristics and eight complication categories (hardware malfunction, infection, neurological, other haemorrhagic, thromboembolic, cardiac, pulmonary, and renal/urinary) were reviewed. Outcomes included complications, mortality, hospitalization length, and inflation-adjusted cost. RESULTS There were 44,866 weighted admissions (PD-73.5%, ET-22.7%, dystonia-3.8%). The number of procedures increased 2.22-fold from 2002 to 2014 (N = 2372 in 2002; N = 5260 in 2014). Inpatient cost was $22,802 ± 13,164, remaining stable from 2002 to 2014 ($24,188 ± 15,910, $20,630 ± 11,031, respectively). Four percent experienced complications (dystonia-6.0%, PD-4.4%, ET-3.1%, p < .001). In-hospital mortality was 0.2%. Cost was greater in patients with complications ($36,306 ± 29,263 vs. $22,196 ± 11,560, p < .001). Most common complications were renal/urinary (1.5%), neurological (1.1%), and pulmonary (0.7%). Thromboembolic, pulmonary, and haemorrhagic complications were associated with greatest cost. CONCLUSION Increased DBS utilization for adult movement disorders in the United States from 2002 to 2014 was attributed to rapid adoption by teaching hospitals for PD. DBS remains a safe procedure with low overall complications and stable inpatient costs from 2002 to 2014. Complication risks vary by type of movement disorder, and although rare, multiple complications increase morbidity and cost of care.
Collapse
Affiliation(s)
- Hansen Deng
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - John K Yue
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Doris D Wang
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| |
Collapse
|
3
|
McKinnon C, Gros P, Lee DJ, Hamani C, Lozano AM, Kalia LV, Kalia SK. Deep brain stimulation: potential for neuroprotection. Ann Clin Transl Neurol 2019; 6:174-185. [PMID: 30656196 PMCID: PMC6331208 DOI: 10.1002/acn3.682] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 09/12/2018] [Accepted: 09/28/2018] [Indexed: 12/28/2022] Open
Abstract
Over the last two decades there has been an exponential rise in the number of patients receiving deep brain stimulation (DBS) to manage debilitating neurological symptoms in conditions such as Parkinson's disease, essential tremor, and dystonia. Novel applications of DBS continue to emerge including treatment of various psychiatric conditions (e.g. obsessive-compulsive disorder, major depression) and cognitive disorders such as Alzheimer's disease. Despite widening therapeutic applications, our understanding of the mechanisms underlying DBS remains limited. In addition to modulation of local and network-wide neuronal activity, growing evidence suggests that DBS may also have important neuroprotective effects in the brain by limiting synaptic dysfunction and neuronal loss in neurodegenerative disorders. In this review, we consider evidence from preclinical and clinical studies of DBS in Parkinson's disease, Alzheimer's disease, and epilepsy that suggest chronic stimulation has the potential to mitigate neuronal loss and disease progression.
Collapse
Affiliation(s)
- Chris McKinnon
- Krembil Research InstituteUniversity Health NetworkToronto Western HospitalTorontoOntarioCanada
| | - Priti Gros
- Division of NeurologyToronto Western HospitalUniversity of TorontoTorontoOntarioCanada
| | - Darrin J. Lee
- Krembil Research InstituteUniversity Health NetworkToronto Western HospitalTorontoOntarioCanada
- Division of NeurosurgeryToronto Western HospitalUniversity of TorontoTorontoOntarioCanada
| | - Clement Hamani
- Harquail Centre for NeuromodulationDivision of NeurosurgerySunnybrook Health Sciences CentreUniversity of TorontoTorontoOntarioCanada
| | - Andres M. Lozano
- Krembil Research InstituteUniversity Health NetworkToronto Western HospitalTorontoOntarioCanada
- Division of NeurosurgeryToronto Western HospitalUniversity of TorontoTorontoOntarioCanada
| | - Lorraine V. Kalia
- Krembil Research InstituteUniversity Health NetworkToronto Western HospitalTorontoOntarioCanada
- Division of NeurologyToronto Western HospitalUniversity of TorontoTorontoOntarioCanada
- Tanz Centre for Research in Neurodegenerative DiseasesUniversity of TorontoTorontoOntarioCanada
| | - Suneil K. Kalia
- Krembil Research InstituteUniversity Health NetworkToronto Western HospitalTorontoOntarioCanada
- Division of NeurosurgeryToronto Western HospitalUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
4
|
Focal stimulation of the sheep motor cortex with a chronically implanted minimally invasive electrode array mounted on an endovascular stent. Nat Biomed Eng 2018; 2:907-914. [DOI: 10.1038/s41551-018-0321-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 10/22/2018] [Indexed: 12/29/2022]
|
5
|
Bittlinger M, Müller S. Opening the debate on deep brain stimulation for Alzheimer disease - a critical evaluation of rationale, shortcomings, and ethical justification. BMC Med Ethics 2018; 19:41. [PMID: 29886845 PMCID: PMC5994654 DOI: 10.1186/s12910-018-0275-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 05/01/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) as investigational intervention for symptomatic relief from Alzheimer disease (AD) has generated big expectations. Our aim is to discuss the ethical justification of this research agenda by examining the underlying research rationale as well as potential methodological pitfalls. The shortcomings we address are of high ethical importance because only scientifically valid research has the potential to be ethical. METHOD We performed a systematic search on MEDLINE and EMBASE. We included 166 publications about DBS for AD into the analysis of research rationale, risks and ethical aspects. Fifty-eight patients were reported in peer-reviewed journals with very mixed results. A grey literature search revealed hints for 75 yet to be published, potentially enrolled patients. RESULTS The results of our systematic review indicate methodological shortcomings in the literature that are both scientific and ethical in nature. According to our analysis, research with human subjects was performed before decisive preclinical research was published examining the specific research question at stake. We also raise the concern that conclusions on the potential safety and efficacy have been reported in the literature that seem premature given the design of the feasibility studies from which they were drawn. In addition, some publications report that DBS for AD was performed without written informed consent from some patients, but from surrogates only. Furthermore, registered ongoing trials plan to enroll severely demented patients. We provide reasons that this would violate Art. 28 of the Declaration of Helsinki, because DBS for AD involves more than minimal risks and burdens, and because its efficacy and safety are not yet empirically established to be likely. CONCLUSION Based on our empirical analysis, we argue that clinical research on interventions of risk class III (Food and Drug Administration and European Medicines Agency) should not be exploratory but grounded on sound, preclinically tested, and disease-specific a posteriori hypotheses. This also applies to DBS for dementia as long as therapeutic benefits are uncertain, and especially when research subjects with cognitive deficits are involved, who may foreseeably progress to full incapacity to provide informed consent during the required follow-up period.
Collapse
Affiliation(s)
- Merlin Bittlinger
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department for Psychiatry and Psychotherapy, CCM, Division of Mind and Brain Research, Charitéplatz 1, 10117 Berlin, Germany
| | - Sabine Müller
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department for Psychiatry and Psychotherapy, CCM, Division of Mind and Brain Research, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
6
|
|
7
|
Zhang C, Hu WH, Wu DL, Zhang K, Zhang JG. Behavioral effects of deep brain stimulation of the anterior nucleus of thalamus, entorhinal cortex and fornix in a rat model of Alzheimer's disease. Chin Med J (Engl) 2016; 128:1190-5. [PMID: 25947402 PMCID: PMC4831546 DOI: 10.4103/0366-6999.156114] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background: Recent clinical and preclinical studies have suggested that deep brain stimulation (DBS) can be used as a tool to enhance cognitive functions. The aim of the present study was to investigate the impact of DBS at three separate targets in the Papez circuit, including the anterior nucleus of thalamus (ANT), the entorhinal cortex (EC), and the fornix (FX), on cognitive behaviors in an Alzheimer's disease (AD) rat model. Methods: Forty-eight rats were subjected to an intrahippocampal injection of amyloid peptides 1-42 to induce an AD model. Rats were divided into six groups: DBS and sham DBS groups of ANT, EC, and FX. Spatial learning and memory were assessed by the Morris water maze (MWM). Recognition memory was investigated by the novel object recognition memory test (NORM). Locomotor and anxiety-related behaviors were detected by the open field test (OF). By using two-way analysis of variance (ANOVA), behavior differences between the six groups were analyzed. Results: In the MWM, the ANT, EC, and FX DBS groups performed differently in terms of the time spent in the platform zone (F(2,23) = 6.04, P < 0.01), the frequency of platform crossing (F(2,23) = 11.53, P < 0.001), and the percent time spent within the platform quadrant (F(2,23) = 6.29, P < 0.01). In the NORM, the EC and FX DBS groups spent more time with the novel object, although the ANT DBS group did not (F(2,23) = 10.03, P < 0.001). In the OF, all of the groups showed a similar total distance moved (F(1,42) = 1.14, P = 0.29) and relative time spent in the center (F(2,42) = 0.56, P = 0.58). Conclusions: Our results demonstrated that DBS of the EC and FX facilitated hippocampus-dependent spatial memory more prominently than ANT DBS. In addition, hippocampus-independent recognition memory was enhanced by EC and FX DBS. None of the targets showed side-effects of anxiety or locomotor behaviors.
Collapse
Affiliation(s)
| | | | | | | | - Jian-Guo Zhang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University; Beijing Key Laboratory of Neurostimulation; Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
| |
Collapse
|
8
|
Selvakumar T, Alavian KN, Tierney T. Analysis of gene expression changes in the rat hippocampus after deep brain stimulation of the anterior thalamic nucleus. J Vis Exp 2015:52457. [PMID: 25867749 PMCID: PMC4401213 DOI: 10.3791/52457] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Deep brain stimulation (DBS) surgery, targeting various regions of the brain such as the basal ganglia, thalamus, and subthalamic regions, is an effective treatment for several movement disorders that have failed to respond to medication. Recent progress in the field of DBS surgery has begun to extend the application of this surgical technique to other conditions as diverse as morbid obesity, depression and obsessive compulsive disorder. Despite these expanding indications, little is known about the underlying physiological mechanisms that facilitate the beneficial effects of DBS surgery. One approach to this question is to perform gene expression analysis in neurons that receive the electrical stimulation. Previous studies have shown that neurogenesis in the rat dentate gyrus is elicited in DBS targeting of the anterior nucleus of the thalamus(1). DBS surgery targeting the ATN is used widely for treatment refractory epilepsy. It is thus of much interest for us to explore the transcriptional changes induced by electrically stimulating the ATN. In this manuscript, we describe our methodologies for stereotactically-guided DBS surgery targeting the ATN in adult male Wistar rats. We also discuss the subsequent steps for tissue dissection, RNA isolation, cDNA preparation and quantitative RT-PCR for measuring gene expression changes. This method could be applied and modified for stimulating the basal ganglia and other regions of the brain commonly clinically targeted. The gene expression study described here assumes a candidate target gene approach for discovering molecular players that could be directing the mechanism for DBS.
Collapse
Affiliation(s)
| | - Kambiz N Alavian
- Division of Brain Sciences, Department of Medicine, Imperial College London
| | - Travis Tierney
- Department of Neurosurgery, Brigham & Women's Hospital, Harvard Medical School;
| |
Collapse
|
9
|
Nardone R, Höller Y, Tezzon F, Christova M, Schwenker K, Golaszewski S, Trinka E, Brigo F. Neurostimulation in Alzheimer's disease: from basic research to clinical applications. Neurol Sci 2015; 36:689-700. [PMID: 25721941 DOI: 10.1007/s10072-015-2120-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/20/2015] [Indexed: 02/02/2023]
Abstract
The development of different methods of brain stimulation provides a promising therapeutic tool with potentially beneficial effects on subjects with impaired cognitive functions. We performed a systematic review of the studies published in the field of neurostimulation in Alzheimer's disease (AD), from basic research to clinical applications. The main methods of non-invasive brain stimulation are repetitive transcranial magnetic stimulation and transcranial direct current stimulation. Preliminary findings have suggested that both techniques can enhance performances on several cognitive functions impaired in AD. Another non-invasive emerging neuromodulatory approach, the transcranial electromagnetic treatment, was found to reverse cognitive impairment in AD transgenic mice and even improves cognitive performance in normal mice. Experimental studies suggest that high-frequency electromagnetic fields may be critically important in AD prevention and treatment through their action at mitochondrial level. Finally, the application of a widely known invasive technique, the deep brain stimulation (DBS), has increasingly been considered as a therapeutic option also for patients with AD; it has been demonstrated that DBS of fornix/hypothalamus and nucleus basalis of Meynert might improve or at least stabilize cognitive functioning in AD. Initial encouraging results provide support for continuing to investigate non-invasive and invasive brain stimulation approaches as an adjuvant treatment for AD patients.
Collapse
Affiliation(s)
- Raffaele Nardone
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University and Center for Cognitive Neuroscience, Salzburg, Austria,
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Teplitzky BA, Connolly AT, Bajwa JA, Johnson MD. Computational modeling of an endovascular approach to deep brain stimulation. J Neural Eng 2014; 11:026011. [PMID: 24608363 DOI: 10.1088/1741-2560/11/2/026011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Deep brain stimulation (DBS) therapy currently relies on a transcranial neurosurgical technique to implant one or more electrode leads into the brain parenchyma. In this study, we used computational modeling to investigate the feasibility of using an endovascular approach to target DBS therapy. APPROACH Image-based anatomical reconstructions of the human brain and vasculature were used to identify 17 established and hypothesized anatomical targets of DBS, of which five were found adjacent to a vein or artery with intraluminal diameter ≥1 mm. Two of these targets, the fornix and subgenual cingulate white matter (SgCwm) tracts, were further investigated using a computational modeling framework that combined segmented volumes of the vascularized brain, finite element models of the tissue voltage during DBS, and multi-compartment axon models to predict the direct electrophysiological effects of endovascular DBS. MAIN RESULTS The models showed that: (1) a ring-electrode conforming to the vessel wall was more efficient at neural activation than a guidewire design, (2) increasing the length of a ring-electrode had minimal effect on neural activation thresholds, (3) large variability in neural activation occurred with suboptimal placement of a ring-electrode along the targeted vessel, and (4) activation thresholds for the fornix and SgCwm tracts were comparable for endovascular and stereotactic DBS, though endovascular DBS was able to produce significantly larger contralateral activation for a unilateral implantation. SIGNIFICANCE Together, these results suggest that endovascular DBS can serve as a complementary approach to stereotactic DBS in select cases.
Collapse
Affiliation(s)
- Benjamin A Teplitzky
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
11
|
Kalia SK, Sankar T, Lozano AM. Deep brain stimulation for Parkinson's disease and other movement disorders. Curr Opin Neurol 2014; 26:374-80. [PMID: 23817213 DOI: 10.1097/wco.0b013e3283632d08] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Deep brain stimulation (DBS) is now widely used in the treatment of Parkinson's disease, tremor, and dystonia. This review examines recent developments in the application of DBS to the management of movement disorders. RECENT FINDINGS In Parkinson's disease, recent work has demonstrated that early DBS may have a significant benefit on quality of life and motor symptoms while permitting a decrease in levodopa equivalent dosage. Thalamic DBS continues to be a well established target for the treatment of tremor, although recent work suggests that alternative targets such as the posterior subthalamic area may be similarly efficacious. The treatment of primary dystonia with DBS has been established in multiple recent trials, demonstrating prolonged symptomatic benefit. SUMMARY DBS is now an established symptomatic treatment modality for Parkinson's disease and other movement disorders. Future work will undoubtedly involve establishing new indications and targets in the treatment of movement disorders with further refinements to existing technology. Ultimately, these methods combined with biologically based therapies may catalyze a shift from symptomatic treatment to actually modifying the natural history of neurodegenerative diseases such as Parkinson's disease.
Collapse
Affiliation(s)
- Suneil K Kalia
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
12
|
Abstract
The field of functional neurosurgery has developed a number of recent innovative neuromodulatory approaches to treat disease that remains resistant to the best medical therapy. These include novel surgical techniques to intervene in motor and cognitive sequelae of refractory epilepsy, neurodegenerative disease, and certain psychiatric conditions. To a large extent, much of the innovation in our field continues to be driven by a systems-level understanding of the impact of disease on the brain. For example, several groups have exploited findings from neuroimaging work to identify a number of new potential neuromodulatory targets for the treatment of refractory depression. Ongoing discoveries at the cellular and molecular level promise targeted gene or drug delivery aimed at curing disease. Neurosurgeons will certainly remain at the forefront of translating these strategies into practical clinical applications. Several randomized trials are now underway to assess the safety and efficacy of a number of new approaches, and we will continue to acquire better knowledge of optimal patient selection, identification of the most effective neuromodulatory targets, and recognition of adverse effects as these studies progress.
Collapse
|
13
|
Overview of Brain pacemaker. APOLLO MEDICINE 2013. [DOI: 10.1016/j.apme.2013.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
14
|
Hassan A, Okun MS. Emerging subspecialties in neurology: deep brain stimulation and electrical neuro-network modulation. Neurology 2013; 80:e47-50. [PMID: 23359377 DOI: 10.1212/wnl.0b013e31827f0f91] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Deep brain stimulation (DBS) is a surgical therapy that involves the delivery of an electrical current to one or more brain targets. This technology has been rapidly expanding to address movement, neuropsychiatric, and other disorders. The evolution of DBS has created a niche for neurologists, both in the operating room and in the clinic. Since DBS is not always deep, not always brain, and not always simply stimulation, a more accurate term for this field may be electrical neuro-network modulation (ENM). Fellowships will likely in future years evolve their scope to include other technologies, and other nervous system regions beyond typical DBS therapy.
Collapse
Affiliation(s)
- Anhar Hassan
- Department of Neurology, University of Florida, Gainesville, FL, USA.
| | | |
Collapse
|
15
|
Leuthardt EC. Developing a new model for the invention and translation of neurotechnologies in academic neurosurgery. Neurosurgery 2013; 72 Suppl 1:182-92. [PMID: 23254807 DOI: 10.1227/neu.0b013e318270cfec] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND There is currently an acceleration of new scientific and technical capabilities that create new opportunities for academic neurosurgery. To engage these changing dynamics, the Center for Innovation in Neuroscience and Technology (CINT) was created on the premise that successful innovation of device-related ideas relies on collaboration between multiple disciplines. The CINT has created a unique model that integrates scientific, medical, engineering, and legal/business experts to participate in the continuum from idea generation to translation. OBJECTIVE To detail the method by which this model has been implemented in the Department of Neurological Surgery at Washington University in St. Louis and the experience that has been accrued thus far. METHODS The workflow is structured to enable cross-disciplinary interaction, both intramurally and extramurally between academia and industry. This involves a structured method for generating, evaluating, and prototyping promising device concepts. The process begins with the "invention session," which consists of a structured exchange between inventors from diverse technical and medical backgrounds. Successful ideas, which pass a separate triage mechanism, are then sent to industry-sponsored multidisciplinary fellowships to create functioning prototypes. RESULTS After 3 years, the CINT has engaged 32 clinical and nonclinical inventors, resulting in 47 ideas, 16 fellowships, and 12 patents, for which 7 have been licensed to industry. Financial models project that if commercially successful, device sales could have a notable impact on departmental revenue. CONCLUSION The CINT is a model that supports an integrated approach from the time an idea is created through its translational development. To date, the approach has been successful in creating numerous concepts that have led to industry licenses. In the long term, this model will create a novel revenue stream to support the academic neurosurgical mission.
Collapse
Affiliation(s)
- Eric C Leuthardt
- Department of Neurological Surgery and Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, St. Louis, Missouri 63130, USA.
| |
Collapse
|
16
|
|
17
|
Daye PM, Monosov IE, Hikosaka O, Leopold DA, Optican LM. pyElectrode: an open-source tool using structural MRI for electrode positioning and neuron mapping. J Neurosci Methods 2012; 213:123-31. [PMID: 23261658 DOI: 10.1016/j.jneumeth.2012.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/10/2012] [Accepted: 12/12/2012] [Indexed: 11/18/2022]
Abstract
Neurophysiologists want to place the tip of an electrode in a specific area of the brain. The coordinates of this area can be obtained from standard stereotaxic atlases. However, individual brains may not align with the atlas exactly. Additionally, for chronic recordings, electrodes are placed through a chamber attached to the animal's skull. Thus, the user wants to know where the area of interest is in chamber coordinates, not stereotaxic coordinates. After the chamber has been attached an MRI is often made. This assists in electrode placement, as the location of a target relative to the chamber can be determined based on the atlas. However, doing this in practice requires rough estimation or cumbersome calculations. pyElectrode provides a graphical display and performs calculations necessary to convert between stereotaxic and chamber coordinates, thus facilitating MR-based targeting from an implanted chamber. It also allows the experimenter to visualize recording or stimulation sites during experiments. Finally, it can display and output those sites on an MRI slice background in a format suitable for publication.
Collapse
Affiliation(s)
- Pierre M Daye
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | |
Collapse
|
18
|
Al-Harbi KS, Qureshi NA. Neuromodulation therapies and treatment-resistant depression. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2012; 5:53-65. [PMID: 23152710 PMCID: PMC3496963 DOI: 10.2147/mder.s33198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Patients with treatment-resistant depression (TRD) who showed partial response to pharmacological and psychotherapeutic interventions need a trial of neuromodulation therapies (NTs). Objective This paper aims to review evidence-based data on the use of NTs in TRD. Method Using keywords and combined-word strategy, multiple computer searches of PubMed, Google Scholar, Quertle(R), and Medline were conducted for retrieving relevant articles published in English-language peer-reviewed journals (2000–2012). Those papers that addressed NTs in TRD were retained for extensive review. Results Despite methodological challenges, a range of 30%–93% of TRD patients showed substantial improvement to one of the NTs. One hundred–percent improvement was reported in two single-case studies on deep brain stimulation. Some studies reported no benefits from transcranial direct current stimulation. NTs were reported to have good clinical efficacy, better safety margin, and benign side-effect profile. Data are limited regarding randomized clinical trials, long-term efficacy, and cost-effectiveness of these approaches. Both modified electroconvulsive therapy and magnetic seizure therapy were associated with reversible but disturbing neurocognitive adverse effects. Besides clinical utility, NTs including approaches on the horizon may unlock the biological basis underlying mood disorders including TRD. Conclusion NTs are promising in patients with TRD, as the majority of them show good clinical response measured by standardized depression scales. NTs need further technological refinements and optimization together with continuing well-designed studies that recruit larger numbers of participants with TRD.
Collapse
|
19
|
Tierney TS, Lozano AM. Surgical treatment for secondary dystonia. Mov Disord 2012; 27:1598-605. [PMID: 23037556 DOI: 10.1002/mds.25204] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 08/15/2012] [Accepted: 08/22/2012] [Indexed: 12/16/2022] Open
Abstract
Surgical therapy for the secondary dystonias is generally perceived to be less effective than for primary disease. However, a number of case reports and small open series have recently appeared describing quite favorable outcomes following surgery for some nonprimary dystonias. We discuss surgical treatment options for this group of diverse conditions, including tardive dystonia, dystonic cerebral palsy, and certain heredodegenerative diseases in which deep brain stimulation and ablative lesions of the posteroventral pallidum have been shown to be effective. Other types of secondary dystonia respond less well to pallidal surgery, particularly when anatomical lesions of the basal ganglia are prominent on preoperative imaging. For these conditions, central baclofen delivery and botulinum toxin denervation may be considered. With optimal medical and surgical care, some patients with secondary dystonia have achieved reductions in disability and pain that approach those documented for primary dystonia.
Collapse
Affiliation(s)
- Travis S Tierney
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|
20
|
Joshi N, Páez X, Araque H. Electroacupuncture Effects on the Disintegration of Beta Amyloid Sheets: Its Application to Alzheimer's Disease. Med Acupunct 2012. [DOI: 10.1089/acu.2012.0873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Narahari Joshi
- Department of Physiology, Universidad de los Andes, Mérida, Venezuela
| | - Ximena Páez
- Laboratory of Behavioral Physiology, School of Medicine, Universidad de los Andes, Mérida, Venezuela
| | - Haydeé Araque
- Programa Integral de Salud Maturitas Academiae (PRISMA), Universidad de los Andes, Mérida, Venezuela
| |
Collapse
|
21
|
Markovitz CD, Tang TT, Edge DP, Lim HH. Three-dimensional brain reconstruction of in vivo electrode tracks for neuroscience and neural prosthetic applications. Front Neural Circuits 2012; 6:39. [PMID: 22754502 PMCID: PMC3385562 DOI: 10.3389/fncir.2012.00039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 06/08/2012] [Indexed: 11/13/2022] Open
Abstract
The brain is a densely interconnected network that relies on populations of neurons within and across multiple nuclei to code for features leading to perception and action. However, the neurophysiology field is still dominated by the characterization of individual neurons, rather than simultaneous recordings across multiple regions, without consistent spatial reconstruction of their locations for comparisons across studies. There are sophisticated histological and imaging techniques for performing brain reconstructions. However, what is needed is a method that is relatively easy and inexpensive to implement in a typical neurophysiology lab and provides consistent identification of electrode locations to make it widely used for pooling data across studies and research groups. This paper presents our initial development of such an approach for reconstructing electrode tracks and site locations within the guinea pig inferior colliculus (IC) to identify its functional organization for frequency coding relevant for a new auditory midbrain implant (AMI). Encouragingly, the spatial error associated with different individuals reconstructing electrode tracks for the same midbrain was less than 65 μm, corresponding to an error of ~1.5% relative to the entire IC structure (~4–5 mm diameter sphere). Furthermore, the reconstructed frequency laminae of the IC were consistently aligned across three sampled midbrains, demonstrating the ability to use our method to combine location data across animals. Hopefully, through further improvements in our reconstruction method, it can be used as a standard protocol across neurophysiology labs to characterize neural data not only within the IC but also within other brain regions to help bridge the gap between cellular activity and network function. Clinically, correlating function with location within and across multiple brain regions can guide optimal placement of electrodes for the growing field of neural prosthetics.
Collapse
Affiliation(s)
- Craig D Markovitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis MN, USA
| | | | | | | |
Collapse
|
22
|
Yashar P, Hopkins LN. Instrumentation in neurosurgery: nurturing the trend toward minimalism. World Neurosurg 2012; 80:240-2. [PMID: 22381330 DOI: 10.1016/j.wneu.2011.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 11/18/2011] [Indexed: 11/16/2022]
Affiliation(s)
- Parham Yashar
- Department of Neurosurgery, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA; Department of Radiology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA; Department of Neurosurgery, Gates Vascular Institute, Kaleida Health, Buffalo, New York, USA
| | | |
Collapse
|
23
|
Sankar T, Tierney TS, Hamani C. Novel applications of deep brain stimulation. Surg Neurol Int 2012; 3:S26-33. [PMID: 22826807 PMCID: PMC3400483 DOI: 10.4103/2152-7806.91607] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 12/20/2011] [Indexed: 11/11/2022] Open
Abstract
The success of deep brain stimulation (DBS) surgery in treating medically refractory symptoms of some movement disorders has inspired further investigation into a wide variety of other treatment-resistant conditions. These range from disorders of gait, mood, and memory to problems as diverse as obesity, consciousness, and addiction. We review the emerging indications, rationale, and outcomes for some of the most promising new applications of DBS in the treatment of postural instability associated with Parkinson's disease, depression, obsessive–compulsive disorder, obesity, substance abuse, epilepsy, Alzheimer′s-type dementia, and traumatic brain injury. These studies reveal some of the excitement in a field at the edge of a rapidly expanding frontier. Much work still remains to be done on basic mechanism of DBS, optimal target and patient selection, and long-term durability of this technology in treating new indications.
Collapse
Affiliation(s)
- Tejas Sankar
- Department of Neurosurgery, Toronto Western Hospital, Toronto, Ontario, Canada
| | | | | |
Collapse
|
24
|
Schouenborg J. Biocompatible multichannel electrodes for long-term neurophysiological studies and clinical therapy--novel concepts and design. PROGRESS IN BRAIN RESEARCH 2011; 194:61-70. [PMID: 21867794 DOI: 10.1016/b978-0-444-53815-4.00017-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chronic neural interfaces that are both structurally and functionally stable inside the brain over long time periods and that have minimal effects on the physiological conditions of the neural tissue to be studied hold great promise to become invaluable research and clinical tool in the near future. In this chapter, I will briefly review the state of the art of neural interfaces and the concepts behind our recent research and development of ultrathin multichannel electrodes.
Collapse
Affiliation(s)
- Jens Schouenborg
- Neuronano Research Center, Experimental Medical Science and The Nanometer Consortium, Lund University, Lund, Sweden.
| |
Collapse
|