1
|
Liu S, Gao L, Chen J, Yan J. Single-neuron analysis of axon arbors reveals distinct presynaptic organizations between feedforward and feedback projections. Cell Rep 2024; 43:113590. [PMID: 38127620 DOI: 10.1016/j.celrep.2023.113590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/18/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
The morphology and spatial distribution of axon arbors and boutons are crucial for neuron presynaptic functions. However, the principles governing their whole-brain organization at the single-neuron level remain unclear. We developed a machine-learning method to separate axon arbors from passing axons in single-neuron reconstruction from fluorescence micro-optical sectioning tomography imaging data and obtained 62,374 axon arbors that displayed distinct morphology, spatial patterns, and scaling laws dependent on neuron types and targeted brain areas. Focusing on the axon arbors in the thalamus and cortex, we revealed the segregated spatial distributions and distinct morphology but shared topographic gradients between feedforward and feedback projections. Furthermore, we uncovered an association between arbor complexity and microglia density. Finally, we found that the boutons on terminal arbors show branch-specific clustering with a log-normal distribution that again differed between feedforward and feedback terminal arbors. Together, our study revealed distinct presynaptic structural organizations underlying diverse functional innervation of single projection neurons.
Collapse
Affiliation(s)
- Sang Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Le Gao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiu Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jun Yan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 101408, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China.
| |
Collapse
|
2
|
Abstract
Neuroplasticity, i.e., the modifiability of the brain, is different in development and adulthood. The first includes changes in: (i) neurogenesis and control of neuron number; (ii) neuronal migration; (iii) differentiation of the somato-dendritic and axonal phenotypes; (iv) formation of connections; (v) cytoarchitectonic differentiation. These changes are often interrelated and can lead to: (vi) system-wide modifications of brain structure as well as to (vii) acquisition of specific functions such as ocular dominance or language. Myelination appears to be plastic both in development and adulthood, at least, in rodents. Adult neuroplasticity is limited, and is mainly expressed as changes in the strength of excitatory and inhibitory synapses while the attempts to regenerate connections have met with limited success. The outcomes of neuroplasticity are not necessarily adaptive, but can also be the cause of neurological and psychiatric pathologies.
Collapse
|
3
|
Salas-Lucia F, Pacheco-Torres J, González-Granero S, García-Verdugo JM, Berbel P. Transient Hypothyroidism During Lactation Alters the Development of the Corpus Callosum in Rats. An in vivo Magnetic Resonance Image and Electron Microscopy Study. Front Neuroanat 2020; 14:33. [PMID: 32676012 PMCID: PMC7333461 DOI: 10.3389/fnana.2020.00033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
Magnetic resonance imaging (MRI) data of children with late diagnosed congenital hypothyroidism and cognitive alterations such as abnormal verbal memory processing suggest altered telencephalic commissural connections. The corpus callosum (CC) is the major inter-hemispheric commissure that contra-laterally connects neocortical areas. However, in late diagnosed neonates with congenital hypothyroidism, the possible effect of early transient and chronic postnatal hypothyroidism still remains unknown. We have studied the development of the anterior, middle and posterior CC, using in vivo MRI and electron microscopy in hypothyroid and control male rats. Four groups of methimazole (MMI) treated rats were studied. One group, as a model for early transient hypothyroidism, was MMI-treated from postnatal day (P) 0 to P21; some of these rats were also treated with L-thyroxine (T4) from P15 to 21. Another group modeling chronic hypothyroid, were treated with MMI from P0 to 150 and from embryonic day 10 to P170. The results obtained from these groups were compared with same age control rats. The normalized T2 signal obtained using MRI was higher in MMI-treated rats and correlated with a low number and percentage of myelinated axons. The number and density of myelinated axons decreased in transient and chronic hypothyroid rats at P150. The g-ratio (inner to outer diameter ratio) and the estimated conduction velocity of myelinated axons were similar between MMI-treated and controls, but the conduction delay decreased in the posterior CC of MMI-treated rats compared to controls. These data show that early postnatal transient and chronic hypothyroidism alters CC maturation in a way that may affect the callosal transfer of information. These alterations cannot be reversed after delayed T4-treatment. Our data support the findings of neurocognitive delay in late T4-treated children with congenital hypothyroidism.
Collapse
Affiliation(s)
- Federico Salas-Lucia
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel Hernández (UMH), Sant Joan d’Alacant, Spain
| | - Jesús Pacheco-Torres
- Instituto de Neurociencias de Alicante, UMH – Consejo Superior de Investigaciones Científicas, Sant Joan d’Alacant, Spain
| | - Susana González-Granero
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València - Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - José Manuel García-Verdugo
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València - Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - Pere Berbel
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel Hernández (UMH), Sant Joan d’Alacant, Spain
| |
Collapse
|
4
|
Petanjek Z, Sedmak D, Džaja D, Hladnik A, Rašin MR, Jovanov-Milosevic N. The Protracted Maturation of Associative Layer IIIC Pyramidal Neurons in the Human Prefrontal Cortex During Childhood: A Major Role in Cognitive Development and Selective Alteration in Autism. Front Psychiatry 2019; 10:122. [PMID: 30923504 PMCID: PMC6426783 DOI: 10.3389/fpsyt.2019.00122] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 02/18/2019] [Indexed: 12/12/2022] Open
Abstract
The human specific cognitive shift starts around the age of 2 years with the onset of self-awareness, and continues with extraordinary increase in cognitive capacities during early childhood. Diffuse changes in functional connectivity in children aged 2-6 years indicate an increase in the capacity of cortical network. Interestingly, structural network complexity does not increase during this time and, thus, it is likely to be induced by selective maturation of a specific neuronal subclass. Here, we provide an overview of a subclass of cortico-cortical neurons, the associative layer IIIC pyramids of the human prefrontal cortex. Their local axonal collaterals are in control of the prefrontal cortico-cortical output, while their long projections modulate inter-areal processing. In this way, layer IIIC pyramids are the major integrative element of cortical processing, and changes in their connectivity patterns will affect global cortical functioning. Layer IIIC neurons have a unique pattern of dendritic maturation. In contrast to other classes of principal neurons, they undergo an additional phase of extensive dendritic growth during early childhood, and show characteristic molecular changes. Taken together, circuits associated with layer IIIC neurons have the most protracted period of developmental plasticity. This unique feature is advanced but also provides a window of opportunity for pathological events to disrupt normal formation of cognitive circuits involving layer IIIC neurons. In this manuscript, we discuss how disrupted dendritic and axonal maturation of layer IIIC neurons may lead into global cortical disconnectivity, affecting development of complex communication and social abilities. We also propose a model that developmentally dictated incorporation of layer IIIC neurons into maturing cortico-cortical circuits between 2 to 6 years will reveal a previous (perinatal) lesion affecting other classes of principal neurons. This "disclosure" of pre-existing functionally silent lesions of other neuronal classes induced by development of layer IIIC associative neurons, or their direct alteration, could be found in different forms of autism spectrum disorders. Understanding the gene-environment interaction in shaping cognitive microcircuitries may be fundamental for developing rehabilitation and prevention strategies in autism spectrum and other cognitive disorders.
Collapse
Affiliation(s)
- Zdravko Petanjek
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Dora Sedmak
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Domagoj Džaja
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ana Hladnik
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mladen Roko Rašin
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Nataša Jovanov-Milosevic
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
5
|
Postnatal development and maturation of layer 1 in the lateral prefrontal cortex and its disruption in autism. Acta Neuropathol Commun 2019; 7:40. [PMID: 30867066 PMCID: PMC6417186 DOI: 10.1186/s40478-019-0684-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/23/2019] [Indexed: 12/11/2022] Open
Abstract
Autism is a neurodevelopmental connectivity disorder characterized by cortical network disorganization and imbalance in excitation/inhibition. However, little is known about the development of autism pathology and the disruption of laminar-specific excitatory and inhibitory cortical circuits. To begin to address these issues, we examined layer 1 of the lateral prefrontal cortex (LPFC), an area with prolonged development and maturation that is affected in autism. We focused on layer 1 because it contains a distinctive, diverse population of interneurons and glia, receives input from feedback and neuromodulatory pathways, and plays a critical role in the development, maturation, and function of the cortex. We used unbiased quantitative methods at high resolution to study the morphology, neurochemistry, distribution, and density of neurons and myelinated axons in post-mortem brain tissue from children and adults with and without autism. We cross-validated our findings through comparisons with neighboring anterior cingulate cortices and optimally-fixed non-human primate tissue. In neurotypical controls we found an increase in the density of myelinated axons from childhood to adulthood. Neuron density overall declined with age, paralleled by decreased density of inhibitory interneurons labeled by calretinin (CR), calbindin (CB), and parvalbumin (PV). Importantly, we found PV neurons in layer 1 of typically developing children, previously detected only perinatally. In autism there was disorganization of cortical networks within layer 1: children with autism had increased variability in the trajectories and thickness of myelinated axons in layer 1, while adults with autism had a reduction in the relative proportion of thin axons. Neurotypical postnatal changes in layer 1 of LPFC likely underlie refinement of cortical activity during maturation of cortical networks involved in cognition. Our findings suggest that disruption of the maturation of feedback pathways, rather than interneurons in layer 1, has a key role in the development of imbalance between excitation and inhibition in autism.
Collapse
|
6
|
Opposite development of short- and long-range anterior cingulate pathways in autism. Acta Neuropathol 2018; 136:759-778. [PMID: 30191402 PMCID: PMC6208731 DOI: 10.1007/s00401-018-1904-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 12/31/2022]
Abstract
Autism has been linked with the changes in brain connectivity that disrupt neural communication, especially involving frontal networks. Pathological changes in white matter are evident in adults with autism, particularly affecting axons below the anterior cingulate cortices (ACC). It is still unknown whether axon pathology appears early or late in development and whether it changes or not from childhood through adulthood. To address these questions, we examined typical and pathological development of about 1 million axons in post-mortem brains of children, adolescents, and adults with and without autism (ages 3-67 years). We used high-resolution microscopy to systematically sample and study quantitatively the fine structure of myelinated axons in the white matter below ACC. We provide novel evidence of changes in the density, size and trajectories of ACC axons in typical postnatal development from childhood through adulthood. Against the normal profile of axon development, our data revealed lower density of myelinated axons that connect ACC with neighboring cortices in children with autism. In the course of development the proportion of thin axons, which form short-range pathways, increased significantly in individuals with autism, but remained flat in controls. In contrast, the relative proportion of thick axons, which form long-range pathways, increased from childhood to adulthood in the control group, but decreased in autism. Our findings provide a timeline for profound changes in axon density and thickness below ACC that affect axon physiology in a direction suggesting bias in short over distant neural communication in autism. Importantly, measures of axon density, myelination, and orientation provide white matter anisotropy/diffusivity estimates at the level of single axons. The structural template established can be used to compare with measures obtained from imaging in living subjects, and guide analysis of functional and structural imaging data from humans for comparison with pathological states.
Collapse
|
7
|
García-Cabezas MÁ, Barbas H, Zikopoulos B. Parallel Development of Chromatin Patterns, Neuron Morphology, and Connections: Potential for Disruption in Autism. Front Neuroanat 2018; 12:70. [PMID: 30174592 PMCID: PMC6107687 DOI: 10.3389/fnana.2018.00070] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/30/2018] [Indexed: 12/27/2022] Open
Abstract
The phenotype of neurons and their connections depend on complex genetic and epigenetic processes that regulate the expression of genes in the nucleus during development and throughout life. Here we examined the distribution of nuclear chromatin patters in relation to the epigenetic landscape, phenotype and connections of neurons with a focus on the primate cerebral cortex. We show that nuclear patterns of chromatin in cortical neurons are related to neuron size and cortical connections. Moreover, we point to evidence that reveals an orderly sequence of events during development, linking chromatin and gene expression patterns, neuron morphology, function, and connections across cortical areas and layers. Based on this synthesis, we posit that systematic studies of changes in chromatin patterns and epigenetic marks across cortical areas will provide novel insights on the development and evolution of cortical networks, and their disruption in connectivity disorders of developmental origin, like autism. Achieving this requires embedding and interpreting genetic, transcriptional, and epigenetic studies within a framework that takes into consideration distinct types of neurons, local circuit interactions, and interareal pathways. These features vary systematically across cortical areas in parallel with laminar structure and are differentially affected in disorders. Finally, based on evidence that autism-associated genetic polymorphisms are especially prominent in excitatory neurons and connectivity disruption affects mostly limbic cortices, we employ this systematic approach to propose novel, targeted studies of projection neurons in limbic areas to elucidate the emergence and time-course of developmental disruptions in autism.
Collapse
Affiliation(s)
- Miguel Á García-Cabezas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States
| | - Helen Barbas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States.,Graduate Program in Neuroscience, Boston University, Boston, MA, United States
| | - Basilis Zikopoulos
- Graduate Program in Neuroscience, Boston University, Boston, MA, United States.,Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States
| |
Collapse
|
8
|
Lucia FS, Pacheco-Torres J, González-Granero S, Canals S, Obregón MJ, García-Verdugo JM, Berbel P. Transient Hypothyroidism During Lactation Arrests Myelination in the Anterior Commissure of Rats. A Magnetic Resonance Image and Electron Microscope Study. Front Neuroanat 2018; 12:31. [PMID: 29755326 PMCID: PMC5935182 DOI: 10.3389/fnana.2018.00031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 04/09/2018] [Indexed: 12/14/2022] Open
Abstract
Thyroid hormone deficiency at early postnatal ages affects the cytoarchitecture and function of neocortical and telencephalic limbic areas, leading to impaired associative memory and in a wide spectrum of neurological and mental diseases. Neocortical areas project interhemispheric axons mostly through the corpus callosum and to a lesser extent through the anterior commissure (AC), while limbic areas mostly project through the AC and hippocampal commissures. Functional magnetic resonance data from children with late diagnosed congenital hypothyroidism and abnormal verbal memory processing, suggest altered ipsilateral and contralateral telencephalic connections. Gestational hypothyroidism affects AC development but the possible effect of transient and chronic postnatal hypothyroidism, as occurs in late diagnosed neonates with congenital hypothyroidism and in children growing up in iodine deficient areas, still remains unknown. We studied AC development using in vivo magnetic resonance imaging and electron microscopy in hypothyroid and control male rats. Four groups of methimazole (MMI) treated rats were studied. One group was MMI-treated from postnatal day (P) 0 to P21; some of these rats were also treated with L-thyroxine (T4) from P15 to P21, as a model for early transient hypothyroidism. Other rats were MMI-treated from P0 to P150 and from embryonic day (E) 10 to P170, as a chronic hypothyroidism group. The results were compared with age paired control rats. The normalized T2 signal using magnetic resonance image was higher in MMI-treated rats and correlated with the number and percentage of myelinated axons. Using electron microscopy, we observed decreased myelinated axon number and density in transient and chronic hypothyroid rats at P150, unmyelinated axon number increased slightly in chronic hypothyroid rats. In MMI-treated rats, the myelinated axon g-ratio and conduction velocity was similar to control rats, but with a decrease in conduction delays. These data show that early postnatal transient and chronic hypothyroidism alters AC maturation that may affect the transfer of information through the AC. The alterations cannot be recovered after delayed T4-treatment. Our data support the neurocognitive delay found in late T4-treated children with congenital hypothyroidism.
Collapse
Affiliation(s)
- Federico S. Lucia
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel Hernández, Sant Joan d’Alacant, Alicante, Spain
| | - Jesús Pacheco-Torres
- Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Alicante, Spain
| | - Susana González-Granero
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Universitat de València, Valencia, Spain
| | - Santiago Canals
- Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Alicante, Spain
| | - María-Jesús Obregón
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - José M. García-Verdugo
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Universitat de València, Valencia, Spain
| | - Pere Berbel
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel Hernández, Sant Joan d’Alacant, Alicante, Spain
| |
Collapse
|
9
|
Innocenti GM. Network causality, axonal computations, and Poffenberger. Exp Brain Res 2017; 235:2349-2357. [PMID: 28488011 PMCID: PMC5502070 DOI: 10.1007/s00221-017-4948-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/23/2017] [Indexed: 10/25/2022]
Abstract
All brain operations are implemented by networks of neurons. Unfortunately, the networks underlying even the most elementary brain operations remain elusive. This is due to the complexity of the networks, their heterogeneity, and to the multiple computations performed by the axons. Poffenberger's paradigm is one example of a simple task aimed at characterizing the temporal properties of an interhemispheric network which has remained elusive to this day.
Collapse
Affiliation(s)
- Giorgio M Innocenti
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden.
- Brain and Mind Institute, and Signal Processing Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
10
|
Cross-Modal Plasticity in Higher-Order Auditory Cortex of Congenitally Deaf Cats Does Not Limit Auditory Responsiveness to Cochlear Implants. J Neurosci 2017; 36:6175-85. [PMID: 27277796 DOI: 10.1523/jneurosci.0046-16.2016] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/19/2016] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED Congenital sensory deprivation can lead to reorganization of the deprived cortical regions by another sensory system. Such cross-modal reorganization may either compete with or complement the "original" inputs to the deprived area after sensory restoration and can thus be either adverse or beneficial for sensory restoration. In congenital deafness, a previous inactivation study documented that supranormal visual behavior was mediated by higher-order auditory fields in congenitally deaf cats (CDCs). However, both the auditory responsiveness of "deaf" higher-order fields and interactions between the reorganized and the original sensory input remain unknown. Here, we studied a higher-order auditory field responsible for the supranormal visual function in CDCs, the auditory dorsal zone (DZ). Hearing cats and visual cortical areas served as a control. Using mapping with microelectrode arrays, we demonstrate spatially scattered visual (cross-modal) responsiveness in the DZ, but show that this did not interfere substantially with robust auditory responsiveness elicited through cochlear implants. Visually responsive and auditory-responsive neurons in the deaf auditory cortex formed two distinct populations that did not show bimodal interactions. Therefore, cross-modal plasticity in the deaf higher-order auditory cortex had limited effects on auditory inputs. The moderate number of scattered cross-modally responsive neurons could be the consequence of exuberant connections formed during development that were not pruned postnatally in deaf cats. Although juvenile brain circuits are modified extensively by experience, the main driving input to the cross-modally (visually) reorganized higher-order auditory cortex remained auditory in congenital deafness. SIGNIFICANCE STATEMENT In a common view, the "unused" auditory cortex of deaf individuals is reorganized to a compensatory sensory function during development. According to this view, cross-modal plasticity takes over the unused cortex and reassigns it to the remaining senses. Therefore, cross-modal plasticity might conflict with restoration of auditory function with cochlear implants. It is unclear whether the cross-modally reorganized auditory areas lose auditory responsiveness. We show that the presence of cross-modal plasticity in a higher-order auditory area does not reduce auditory responsiveness of that area. Visual reorganization was moderate, spatially scattered and there were no interactions between cross-modally reorganized visual and auditory inputs. These results indicate that cross-modal reorganization is less detrimental for neurosensory restoration than previously thought.
Collapse
|
11
|
Axon diameter relates to synaptic bouton size: structural properties define computationally different types of cortical connections in primates. Brain Struct Funct 2016; 222:1169-1177. [DOI: 10.1007/s00429-016-1266-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 06/28/2016] [Indexed: 10/21/2022]
|
12
|
Abstract
Objects making up complex porous systems in Nature usually span a range of sizes. These size distributions play fundamental roles in defining the physicochemical, biophysical and physiological properties of a wide variety of systems - ranging from advanced catalytic materials to Central Nervous System diseases. Accurate and noninvasive measurements of size distributions in opaque, three-dimensional objects, have thus remained long-standing and important challenges. Herein we describe how a recently introduced diffusion-based magnetic resonance methodology, Non-Uniform-Oscillating-Gradient-Spin-Echo (NOGSE), can determine such distributions noninvasively. The method relies on its ability to probe confining lengths with a (length)6 parametric sensitivity, in a constant-time, constant-number-of-gradients fashion; combined, these attributes provide sufficient sensitivity for characterizing the underlying distributions in μm-scaled cellular systems. Theoretical derivations and simulations are presented to verify NOGSE's ability to faithfully reconstruct size distributions through suitable modeling of their distribution parameters. Experiments in yeast cell suspensions - where the ground truth can be determined from ancillary microscopy - corroborate these trends experimentally. Finally, by appending to the NOGSE protocol an imaging acquisition, novel MRI maps of cellular size distributions were collected from a mouse brain. The ensuing micro-architectural contrasts successfully delineated distinctive hallmark anatomical sub-structures, in both white matter and gray matter tissues, in a non-invasive manner. Such findings highlight NOGSE's potential for characterizing aberrations in cellular size distributions upon disease, or during normal processes such as development.
Collapse
Affiliation(s)
- Noam Shemesh
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Gonzalo A. Álvarez
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Lucio Frydman
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
- * E-mail:
| |
Collapse
|
13
|
Berbel P, Navarro D, Román GC. An evo-devo approach to thyroid hormones in cerebral and cerebellar cortical development: etiological implications for autism. Front Endocrinol (Lausanne) 2014; 5:146. [PMID: 25250016 PMCID: PMC4158880 DOI: 10.3389/fendo.2014.00146] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 08/25/2014] [Indexed: 12/11/2022] Open
Abstract
The morphological alterations of cortical lamination observed in mouse models of developmental hypothyroidism prompted the recognition that these experimental changes resembled the brain lesions of children with autism; this led to recent studies showing that maternal thyroid hormone deficiency increases fourfold the risk of autism spectrum disorders (ASD), offering for the first time the possibility of prevention of some forms of ASD. For ethical reasons, the role of thyroid hormones on brain development is currently studied using animal models, usually mice and rats. Although mammals have in common many basic developmental principles regulating brain development, as well as fundamental basic mechanisms that are controlled by similar metabolic pathway activated genes, there are also important differences. For instance, the rodent cerebral cortex is basically a primary cortex, whereas the primary sensory areas in humans account for a very small surface in the cerebral cortex when compared to the associative and frontal areas that are more extensive. Associative and frontal areas in humans are involved in many neurological disorders, including ASD, attention deficit-hyperactive disorder, and dyslexia, among others. Therefore, an evo-devo approach to neocortical evolution among species is fundamental to understand not only the role of thyroid hormones and environmental thyroid disruptors on evolution, development, and organization of the cerebral cortex in mammals but also their role in neurological diseases associated to thyroid dysfunction.
Collapse
Affiliation(s)
- Pere Berbel
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel Hernández, Alicante, Spain
| | - Daniela Navarro
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel Hernández, Alicante, Spain
| | - Gustavo C. Román
- Department of Neurology, Weill Cornell Medical College, Cornell University, New York, NY, USA
- Methodist Neurological Institute, Houston, TX, USA
| |
Collapse
|
14
|
Rockland KS. Collateral branching of long-distance cortical projections in monkey. J Comp Neurol 2013; 521:4112-23. [DOI: 10.1002/cne.23414] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/24/2013] [Accepted: 05/28/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Kathleen S. Rockland
- Department of Anatomy and Neurobiology; Boston University School of Medicine; Boston Massachusetts 02118
| |
Collapse
|
15
|
Retraction - October 2011. Cereb Cortex 2013; 23:1002. [DOI: 10.1093/cercor/bhr183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
16
|
Chen Y, Shin BC, Thamotharan S, Devaskar SU. Creb1-Mecp2-(m)CpG complex transactivates postnatal murine neuronal glucose transporter isoform 3 expression. Endocrinology 2013; 154:1598-611. [PMID: 23493374 PMCID: PMC3602632 DOI: 10.1210/en.2012-2076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The murine neuronal facilitative glucose transporter isoform 3 (Glut3) is developmentally regulated, peaking in expression at postnatal day (PN)14. In the present study, we characterized a canonical CpG island spanning the 5'-flanking region of the glut3 gene. Methylation-specific PCR and bisulfite sequencing identified methylation of this CpG ((m)CpG) island of the glut3 gene, frequency of methylation increasing 2.5-fold with a 1.6-fold increase in DNA methyl transferase 3a concentrations noted with advancing postnatal age (PN14 vs PN3). 5'-flanking region of glut3-luciferase reporter transient transfection in HT22 hippocampal neurons demonstrated that (m)CpGs inhibit glut3 transcription. Contrary to this biological function, glut3 expression rises synchronously with (m)CpGs in PN14 vs PN3 neurons. Chromatin immunoprecipitation (IP) revealed that methyl-CpG binding protein 2 (Mecp2) bound the glut3-(m)CpGs. Depending on association with specific coregulators, Mecp2, a dual regulator of gene transcription, may repress or activate a downstream gene. Sequential chromatin IP uncovered the glut3-(m)CpGs to bind Mecp2 exponentially upon recruitment of Creb1 rather than histone deacetylase 1. Co-IP and coimmunolocalization confirmed that Creb1 associated with Mecp2 and cotransfection with glut3-(m)CpG in HT22 cells enhanced glut3 transcription. Separate 5-aza-2'-deoxycytidine pretreatment or in combination with trichostatin A reduced (m)CpG and specific small interference RNAs targeting Mecp2 and Creb1 separately or together depleting Mecp2 and/or Creb1 binding of glut3-(m)CpGs reduced glut3 expression in HT22 cells. We conclude that Glut3 is a methylation-sensitive neuronal gene that recruits Mecp2. Recruitment of Creb1-Mecp2 by glut3-(m)CpG contributes towards transactivation, formulating an escape from (m)CpG-induced gene suppression, and thereby promoting developmental neuronal glut3 gene transcription and expression.
Collapse
Affiliation(s)
- Yongjun Chen
- Department of Pediatrics, Division of Neonatology and Developmental Biology, Neonatal Research Center, David Geffen School of Medicine University of California LosAngeles, Los Angeles, California 90095-1752, USA
| | | | | | | |
Collapse
|
17
|
Nicotinamide, NAD(P)(H), and Methyl-Group Homeostasis Evolved and Became a Determinant of Ageing Diseases: Hypotheses and Lessons from Pellagra. Curr Gerontol Geriatr Res 2012; 2012:302875. [PMID: 22536229 PMCID: PMC3318212 DOI: 10.1155/2012/302875] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 12/19/2011] [Indexed: 01/22/2023] Open
Abstract
Compartmentalized redox faults are common to ageing diseases. Dietary constituents are catabolized to NAD(H) donating electrons producing proton-based bioenergy in coevolved, cross-species and cross-organ networks. Nicotinamide and NAD deficiency from poor diet or high expenditure causes pellagra, an ageing and dementing disorder with lost robustness to infection and stress. Nicotinamide and stress induce Nicotinamide-N-methyltransferase (NNMT) improving choline retention but consume methyl groups. High NNMT activity is linked to Parkinson's, cancers, and diseases of affluence. Optimising nicotinamide and choline/methyl group availability is important for brain development and increased during our evolution raising metabolic and methylome ceilings through dietary/metabolic symbiotic means but strict energy constraints remain and life-history tradeoffs are the rule. An optimal energy, NAD and methyl group supply, avoiding hypo and hyper-vitaminoses nicotinamide and choline, is important to healthy ageing and avoids utilising double-edged symbionts or uncontrolled autophagy or reversions to fermentation reactions in inflammatory and cancerous tissue that all redistribute NAD(P)(H), but incur high allostatic costs.
Collapse
|
18
|
Tomasi S, Caminiti R, Innocenti GM. Areal differences in diameter and length of corticofugal projections. ACTA ACUST UNITED AC 2012; 22:1463-72. [PMID: 22302056 DOI: 10.1093/cercor/bhs011] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cortical areas differ in the size and distribution of neuronal cell bodies, density, and distribution of myelinated axons, connections, and functional properties. We find that they also differ in the diameter of long corticofugal axons, with the thickest axons originating from primary motor, somatosensory, and visual areas and the thinnest ones from prefrontal and temporal areas. Since diameter is proportional to axonal conduction velocity, it can be inferred that action potentials issued from the different areas will be relayed to their targets at different speed. Conduction delays also depend on conduction distance. By computing conduction velocity and conduction distances, we found the longest conduction delays for the primary visual and temporal areas and the shortest for the premotor, primary motor, and somatosensory areas, compatible with the available electrophysiological data. These findings seem to establish a new principle in cortical organization relevant to the pathophysiology of neurological or psychiatric illnesses as well as to the speed of information processing in cortical circuits.
Collapse
Affiliation(s)
- Simone Tomasi
- Department of Anatomy, Pharmacology and Forensic Medicine, University of Turin, Orbassano, 10126 Turin, Italy
| | | | | |
Collapse
|