1
|
Iglesias-Ortega L, Megías-Fernández C, Domínguez-Giménez P, Jimeno-González S, Rivero S. Cell consequences of loss of function of the epigenetic factor EHMT1. Cell Signal 2023:110734. [PMID: 37257768 DOI: 10.1016/j.cellsig.2023.110734] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
EHMT1 is an epigenetic factor with histone methyltransferase activity that appears mutated in Kleefstra syndrome, a neurodevelopmental genetic disorder characterized by developmental delay, intellectual disability, and autistic-like features. Despite recent progress in the study of the function of this gene and the molecular etiology of the disease, our knowledge of how EHMT1 haploinsufficiency causes Kleefstra syndrome is still very limited. Here, we show that EHMT1 depletion in RPE1 cells leads to alterations in the morphology and distribution of different subcellular structures, such as the Golgi apparatus, the lysosomes and different cell adhesion components. EHMT1 downregulation also increases centriolar satellites detection, which may indicate a role for EHMT1 in centrosome functioning. Furthermore, the migration process is also altered in EHMT1 depleted cells, which show reduced migration capacity. We consider that the described phenotypes could open new possibilities for understanding the functional impact of EHMT1 haploinsufficiency in Kleefstra syndrome, helping to elucidate the link between epigenetic regulation and the underlying cellular mechanisms that result in this neurodevelopmental disorder. This knowledge could be relevant not only for the treatment of this syndrome, but also for other neurodevelopmental conditions that could share similar deregulated cellular pathways.
Collapse
Affiliation(s)
- Lucía Iglesias-Ortega
- Departamento de Citología e Histología Normal y Patológica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Clara Megías-Fernández
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain; Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - Paloma Domínguez-Giménez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - Silvia Jimeno-González
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain; Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - Sabrina Rivero
- Departamento de Citología e Histología Normal y Patológica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain; Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain.
| |
Collapse
|
2
|
Maia N, Nabais Sá MJ, Melo-Pires M, de Brouwer APM, Jorge P. Intellectual disability genomics: current state, pitfalls and future challenges. BMC Genomics 2021; 22:909. [PMID: 34930158 PMCID: PMC8686650 DOI: 10.1186/s12864-021-08227-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/02/2021] [Indexed: 12/18/2022] Open
Abstract
Intellectual disability (ID) can be caused by non-genetic and genetic factors, the latter being responsible for more than 1700 ID-related disorders. The broad ID phenotypic and genetic heterogeneity, as well as the difficulty in the establishment of the inheritance pattern, often result in a delay in the diagnosis. It has become apparent that massive parallel sequencing can overcome these difficulties. In this review we address: (i) ID genetic aetiology, (ii) clinical/medical settings testing, (iii) massive parallel sequencing, (iv) variant filtering and prioritization, (v) variant classification guidelines and functional studies, and (vi) ID diagnostic yield. Furthermore, the need for a constant update of the methodologies and functional tests, is essential. Thus, international collaborations, to gather expertise, data and resources through multidisciplinary contributions, are fundamental to keep track of the fast progress in ID gene discovery.
Collapse
Affiliation(s)
- Nuno Maia
- Centro de Genética Médica Jacinto de Magalhães (CGM), Centro Hospitalar Universitário do Porto (CHUPorto), Porto, Portugal. .,Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), and ITR - Laboratory for Integrative and Translational Research in Population Health, University of Porto, Porto, Portugal.
| | - Maria João Nabais Sá
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), and ITR - Laboratory for Integrative and Translational Research in Population Health, University of Porto, Porto, Portugal
| | - Manuel Melo-Pires
- Serviço de Neuropatologia, Centro Hospitalar e Universitário do Porto (CHUPorto), Porto, Portugal
| | - Arjan P M de Brouwer
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Paula Jorge
- Centro de Genética Médica Jacinto de Magalhães (CGM), Centro Hospitalar Universitário do Porto (CHUPorto), Porto, Portugal.,Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), and ITR - Laboratory for Integrative and Translational Research in Population Health, University of Porto, Porto, Portugal
| |
Collapse
|
3
|
Haertle L, Müller T, Lardenoije R, Maierhofer A, Dittrich M, Riemens RJM, Stora S, Roche M, Leber M, Riedel-Heller S, Wagner M, Scherer M, Ravel A, Mircher C, Cieuta-Walti C, Durand S, van de Hove DLA, Hoffmann P, Ramirez A, Haaf T, El Hajj N, Mégarbané A. Methylomic profiling in trisomy 21 identifies cognition- and Alzheimer's disease-related dysregulation. Clin Epigenetics 2019; 11:195. [PMID: 31843015 PMCID: PMC6916110 DOI: 10.1186/s13148-019-0787-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 11/25/2019] [Indexed: 11/28/2022] Open
Abstract
Abstract Background Trisomy 21 (T21) is associated with intellectual disability that ranges from mild to profound with an average intellectual quotient of around 50. Furthermore, T21 patients have a high risk of developing Alzheimer’s disease (AD) early in life, characterized by the presence of senile plaques of amyloid protein and neurofibrillary tangles, leading to neuronal loss and cognitive decline. We postulate that epigenetic factors contribute to the observed variability in intellectual disability, as well as at the level of neurodegeneration seen in T21 individuals. Materials and Methods A genome-wide DNA methylation study was performed using Illumina Infinium® MethylationEPIC BeadChips on whole blood DNA of 3 male T21 patients with low IQ, 8 T21 patients with high IQ (4 males and 4 females), and 21 age- and sex-matched control samples (12 males and 9 females) in order to determine whether DNA methylation alterations could help explain variation in cognitive impairment between individuals with T21. In view of the increased risk of developing AD in T21 individuals, we additionally investigated the T21-associated sites in published blood DNA methylation data from the AgeCoDe cohort (German study on Ageing, Cognition, and Dementia). AgeCoDe represents a prospective longitudinal study including non-demented individuals at baseline of which a part develops AD dementia at follow-up. Results Two thousand seven hundred sixteen differentially methylated sites and regions discriminating T21 and healthy individuals were identified. In the T21 high and low IQ comparison, a single CpG located in the promoter of PELI1 was differentially methylated after multiple testing adjustment. For the same contrast, 69 differentially methylated regions were identified. Performing a targeted association analysis for the significant T21-associated CpG sites in the AgeCoDe cohort, we found that 9 showed significant methylation differences related to AD dementia, including one in the ADAM10 gene. This gene has previously been shown to play a role in the prevention of amyloid plaque formation in the brain. Conclusion The differentially methylated regions may help understand the interaction between methylation alterations and cognitive function. In addition, ADAM10 might be a valuable blood-based biomarker for at least the early detection of AD.
Collapse
Affiliation(s)
- Larissa Haertle
- Institute of Human Genetics, Julius Maximilian University, Wuerzburg, Germany.,Division of Hematology and Oncology, Department of Internal Medicine II, University Hospital, Wuerzburg, Germany
| | - Tobias Müller
- Department of Bioinformatics, Julius Maximilian University, Wuerzburg, Germany
| | - Roy Lardenoije
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands.,Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Anna Maierhofer
- Institute of Human Genetics, Julius Maximilian University, Wuerzburg, Germany
| | - Marcus Dittrich
- Institute of Human Genetics, Julius Maximilian University, Wuerzburg, Germany.,Department of Bioinformatics, Julius Maximilian University, Wuerzburg, Germany
| | - Renzo J M Riemens
- Institute of Human Genetics, Julius Maximilian University, Wuerzburg, Germany.,Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands
| | - Samantha Stora
- Institut Jérôme Lejeune, CRB BioJeL, 37 rue des Volontaires, Paris, France
| | - Mathilde Roche
- Institut Jérôme Lejeune, CRB BioJeL, 37 rue des Volontaires, Paris, France
| | - Markus Leber
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, 50937, Cologne, Germany.,Department of Neurodegeneration and Geriatric Psychiatry, University of Bonn, 53127, Bonn, Germany
| | - Steffi Riedel-Heller
- Institute of Social Medicine, Occupational Health and Public Health, University of Leipzig, 04103, Leipzig, Germany
| | - Michael Wagner
- Department of Neurodegeneration and Geriatric Psychiatry, University of Bonn, 53127, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany
| | - Martin Scherer
- Department of Primary Medical Care, University Medical Centre Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Aimé Ravel
- Institut Jérôme Lejeune, CRB BioJeL, 37 rue des Volontaires, Paris, France
| | - Clotilde Mircher
- Institut Jérôme Lejeune, CRB BioJeL, 37 rue des Volontaires, Paris, France
| | | | - Sophie Durand
- Institut Jérôme Lejeune, CRB BioJeL, 37 rue des Volontaires, Paris, France
| | - Daniel L A van de Hove
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands.,Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, 53127, Bonn, Germany.,Department of Genomics, Life & Brain Center, University of Bonn, 53127, Bonn, Germany.,Division of Medical Genetics, University Hospital and Department of Biomedicine, University of Basel, CH-4058, Basel, Switzerland
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, 50937, Cologne, Germany.,Department of Neurodegeneration and Geriatric Psychiatry, University of Bonn, 53127, Bonn, Germany
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilian University, Wuerzburg, Germany
| | - Nady El Hajj
- Institute of Human Genetics, Julius Maximilian University, Wuerzburg, Germany.,College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - André Mégarbané
- Institut Jérôme Lejeune, CRB BioJeL, 37 rue des Volontaires, Paris, France.
| |
Collapse
|
4
|
Qiu JJ, Liu YN, Ren ZR, Yan JB. Dysfunctions of mitochondria in close association with strong perturbation of long noncoding RNAs expression in down syndrome. Int J Biochem Cell Biol 2017; 92:115-120. [DOI: 10.1016/j.biocel.2017.09.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 08/23/2017] [Accepted: 09/23/2017] [Indexed: 01/07/2023]
|
5
|
Multi-target therapeutics for neuropsychiatric and neurodegenerative disorders. Drug Discov Today 2016; 21:1886-1914. [PMID: 27506871 DOI: 10.1016/j.drudis.2016.08.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/20/2016] [Accepted: 08/01/2016] [Indexed: 12/30/2022]
Abstract
Historically, neuropsychiatric and neurodegenerative disease treatments focused on the 'magic bullet' concept; however multi-targeted strategies are increasingly attractive gauging from the escalating research in this area. Because these diseases are typically co-morbid, multi-targeted drugs capable of interacting with multiple targets will expand treatment to the co-morbid disease condition. Despite their theoretical efficacy, there are significant impediments to clinical success (e.g., difficulty titrating individual aspects of the drug and inconclusive pathophysiological mechanisms). The new and revised diagnostic frameworks along with studies detailing the endophenotypic characteristics of the diseases promise to provide the foundation for the circumvention of these impediments. This review serves to evaluate the various marketed and nonmarketed multi-targeted drugs with particular emphasis on their design strategy.
Collapse
|
6
|
Sanchez-Mut JV, Gräff J. Epigenetic Alterations in Alzheimer's Disease. Front Behav Neurosci 2015; 9:347. [PMID: 26734709 PMCID: PMC4681781 DOI: 10.3389/fnbeh.2015.00347] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/25/2015] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is the major cause of dementia in Western societies. It progresses asymptomatically during decades before being belatedly diagnosed when therapeutic strategies have become unviable. Although several genetic alterations have been associated with AD, the vast majority of AD cases do not show strong genetic underpinnings and are thus considered a consequence of non-genetic factors. Epigenetic mechanisms allow for the integration of long-lasting non-genetic inputs on specific genetic backgrounds, and recently, a growing number of epigenetic alterations in AD have been described. For instance, an accumulation of dysregulated epigenetic mechanisms in aging, the predominant risk factor of AD, might facilitate the onset of the disease. Likewise, mutations in several enzymes of the epigenetic machinery have been associated with neurodegenerative processes that are altered in AD such as impaired learning and memory formation. Genome-wide and locus-specific epigenetic alterations have also been reported, and several epigenetically dysregulated genes validated by independent groups. From these studies, a picture emerges of AD as being associated with DNA hypermethylation and histone deacetylation, suggesting a general repressed chromatin state and epigenetically reduced plasticity in AD. Here we review these recent findings and discuss several technical and methodological considerations that are imperative for their correct interpretation. We also pay particular focus on potential implementations and theoretical frameworks that we expect will help to better direct future studies aimed to unravel the epigenetic participation in AD.
Collapse
Affiliation(s)
- Jose V Sanchez-Mut
- Neuroepigenetics Laboratory - UPGRAEFF, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Johannes Gräff
- Neuroepigenetics Laboratory - UPGRAEFF, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| |
Collapse
|
7
|
Mutations in JMJD1C are involved in Rett syndrome and intellectual disability. Genet Med 2015; 18:378-85. [PMID: 26181491 PMCID: PMC4823641 DOI: 10.1038/gim.2015.100] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 06/09/2015] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Autism spectrum disorders are associated with defects in social response and communication that often occur in the context of intellectual disability. Rett syndrome is one example in which epilepsy, motor impairment, and motor disturbance may co-occur. Mutations in histone demethylases are known to occur in several of these syndromes. Herein, we aimed to identify whether mutations in the candidate histone demethylase JMJD1C (jumonji domain containing 1C) are implicated in these disorders. METHODS We performed the mutational and functional analysis of JMJD1C in 215 cases of autism spectrum disorders, intellectual disability, and Rett syndrome without a known genetic defect. RESULTS We found seven JMJD1C variants that were not present in any control sample (~ 6,000) and caused an amino acid change involving a different functional group. From these, two de novo JMJD1C germline mutations were identified in a case of Rett syndrome and in a patient with intellectual disability. The functional study of the JMJD1C mutant Rett syndrome patient demonstrated that the altered protein had abnormal subcellular localization, diminished activity to demethylate the DNA damage-response protein MDC1, and reduced binding to MECP2. We confirmed that JMJD1C protein is widely expressed in brain regions and that its depletion compromises dendritic activity. CONCLUSIONS Our findings indicate that mutations in JMJD1C contribute to the development of Rett syndrome and intellectual disability.Genet Med 18 1, 378-385.
Collapse
|
8
|
Mason GM, Spanó G, Edgin J. Symptoms of attention-deficit/hyperactivity disorder in Down syndrome: effects of the dopamine receptor D4 gene. AMERICAN JOURNAL ON INTELLECTUAL AND DEVELOPMENTAL DISABILITIES 2015; 120:58-71. [PMID: 25551267 DOI: 10.1352/1944-7558-120.1.58] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This study examined individual differences in ADHD symptoms and executive function (EF) in children with Down syndrome (DS) in relation to the dopamine receptor D4 (DRD4) gene, a gene often linked to ADHD in people without DS. Participants included 68 individuals with DS (7-21 years), assessed through laboratory tasks, caregiver reports, and experimenter ratings. Saliva samples were collected from the DS group and 66 children without DS to compare DRD4 allele distribution, showing no difference between the groups. When the sample with DS was stratified for ethnicity (n = 32), the DRD4 7-repeat allele significantly related to parent and experimenter ratings, but not to laboratory assessments. These results suggest that nontrisomy genetic factors may contribute to individual differences in ADHD symptoms in persons with DS.
Collapse
|
9
|
Dekker AD, De Deyn PP, Rots MG. Epigenetics: The neglected key to minimize learning and memory deficits in Down syndrome. Neurosci Biobehav Rev 2014; 45:72-84. [DOI: 10.1016/j.neubiorev.2014.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/04/2014] [Accepted: 05/13/2014] [Indexed: 10/25/2022]
|
10
|
On 'polypharmacy' and multi-target agents, complementary strategies for improving the treatment of depression: a comparative appraisal. Int J Neuropsychopharmacol 2014; 17:1009-37. [PMID: 23719026 DOI: 10.1017/s1461145712001496] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Major depression is a heterogeneous disorder, both in terms of symptoms, ranging from anhedonia to cognitive impairment, and in terms of pathogenesis, with many interacting genetic, epigenetic, developmental and environmental causes. Accordingly, it seems unlikely that depressive states could be fully controlled by a drug possessing one discrete mechanism of action and, in the wake of disappointing results with several classes of highly selective agent, multi-modal treatment concepts are attracting attention. As concerns pharmacotherapy, there are essentially two core strategies. First, multi-target antidepressants that act via two or more complementary mechanisms and, second, polypharmacy, which refers to co-administration of two distinct drugs, usually in separate pills. Both multi-target agents and polypharmacy ideally couple a therapeutically unexploited action to a clinically established mechanism in order to enhance efficacy, moderate side-effects, accelerate onset of action and treat a broader range of symptoms. The melatonin MT1/MT2 agonist and 5-HT(2C) antagonist, agomelatine, which is effective in the short- and long-term treatment of depression, exemplifies the former approach, while evidence-based polypharmacy is illustrated by the adjunctive use of second-generation antipsychotics with serotonin reuptake inhibitors for treatment of resistant depression. Histone acetylation and methylation, ghrelin signalling, inflammatory modulators, metabotropic glutamate-7 receptors and trace amine-associated-1 receptors comprise attractive substrates for new multi-target and polypharmaceutical strategies. The present article outlines the rationale underpinning multi-modal approaches for treating depression, and critically compares and contrasts the pros and cons of established and potentially novel multi-target vs. polypharmaceutical treatments. On balance, the former appear the most promising for the elaboration, development and clinical implementation of innovative concepts for the more effective management of depression.
Collapse
|
11
|
Qureshi IA, Mehler MF. Developing epigenetic diagnostics and therapeutics for brain disorders. Trends Mol Med 2013; 19:732-41. [PMID: 24145019 DOI: 10.1016/j.molmed.2013.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/30/2013] [Accepted: 09/19/2013] [Indexed: 12/11/2022]
Abstract
Perturbations in epigenetic mechanisms have emerged as cardinal features in the molecular pathology of major classes of brain disorders. We therefore highlight evidence which suggests that specific epigenetic signatures measurable in central - and possibly even in peripheral tissues - have significant value as translatable biomarkers for screening, early diagnosis, and prognostication; developing molecularly targeted medicines; and monitoring disease progression and treatment responses. We also draw attention to existing and novel therapeutic approaches directed at epigenetic factors and mechanisms, including strategies for modulating enzymes that write and erase DNA methylation and histone/chromatin marks; protein-protein interactions responsible for reading epigenetic marks; and non-coding RNA pathways.
Collapse
Affiliation(s)
- Irfan A Qureshi
- Roslyn and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
12
|
Jin S, Lee YK, Lim YC, Zheng Z, Lin XM, Ng DPY, Holbrook JD, Law HY, Kwek KYC, Yeo GSH, Ding C. Global DNA hypermethylation in down syndrome placenta. PLoS Genet 2013; 9:e1003515. [PMID: 23754950 PMCID: PMC3675012 DOI: 10.1371/journal.pgen.1003515] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 04/04/2013] [Indexed: 11/19/2022] Open
Abstract
Down syndrome (DS), commonly caused by an extra copy of chromosome 21 (chr21), occurs in approximately one out of 700 live births. Precisely how an extra chr21 causes over 80 clinically defined phenotypes is not yet clear. Reduced representation bisulfite sequencing (RRBS) analysis at single base resolution revealed DNA hypermethylation in all autosomes in DS samples. We hypothesize that such global hypermethylation may be mediated by down-regulation of TET family genes involved in DNA demethylation, and down-regulation of REST/NRSF involved in transcriptional and epigenetic regulation. Genes located on chr21 were up-regulated by an average of 53% in DS compared to normal villi, while genes with promoter hypermethylation were modestly down-regulated. DNA methylation perturbation was conserved in DS placenta villi and in adult DS peripheral blood leukocytes, and enriched for genes known to be causally associated with DS phenotypes. Our data suggest that global epigenetic changes may occur early in development and contribute to DS phenotypes.
Collapse
Affiliation(s)
- Shengnan Jin
- Growth, Development and Metabolism Program, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore
| | - Yew Kok Lee
- Growth, Development and Metabolism Program, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore
| | - Yen Ching Lim
- Growth, Development and Metabolism Program, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore
| | - Zejun Zheng
- Growth, Development and Metabolism Program, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore
| | - Xueqin Michelle Lin
- Growth, Development and Metabolism Program, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore
| | - Desmond P. Y. Ng
- Growth, Development and Metabolism Program, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore
| | - Joanna D. Holbrook
- Growth, Development and Metabolism Program, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore
| | | | | | | | - Chunming Ding
- Growth, Development and Metabolism Program, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore
- * E-mail:
| |
Collapse
|
13
|
Ben-Avraham D, Muzumdar RH, Atzmon G. Epigenetic genome-wide association methylation in aging and longevity. Epigenomics 2013; 4:503-9. [PMID: 23130832 DOI: 10.2217/epi.12.41] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The aging phenotype is the result of a complex interaction between genetic, epigenetic and environmental factors. Evidence suggests that epigenetic changes (i.e., a set of reversible, heritable changes in gene function or other cell phenotype that occurs without a change in DNA sequence) may affect the aging process and may be one of the central mechanisms by which aging predisposes to many age-related diseases. The total number of altered methylation sites increases with increasing age, such that they could serve as marker for chronological age. This article systematically highlights the advances made in the field of epigenomics and their contribution to the understanding of the complex physiology of aging, lifespan and age-associated diseases.
Collapse
Affiliation(s)
- Danny Ben-Avraham
- Department of Medicine, 1300 Morris Park Ave, Golding 502b, Bronx, NY 10461, USA
| | | | | |
Collapse
|
14
|
Millan MJ. An epigenetic framework for neurodevelopmental disorders: from pathogenesis to potential therapy. Neuropharmacology 2012; 68:2-82. [PMID: 23246909 DOI: 10.1016/j.neuropharm.2012.11.015] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 11/11/2012] [Accepted: 11/22/2012] [Indexed: 12/12/2022]
Abstract
Neurodevelopmental disorders (NDDs) are characterized by aberrant and delayed early-life development of the brain, leading to deficits in language, cognition, motor behaviour and other functional domains, often accompanied by somatic symptoms. Environmental factors like perinatal infection, malnutrition and trauma can increase the risk of the heterogeneous, multifactorial and polygenic disorders, autism and schizophrenia. Conversely, discrete genetic anomalies are involved in Down, Rett and Fragile X syndromes, tuberous sclerosis and neurofibromatosis, the less familiar Phelan-McDermid, Sotos, Kleefstra, Coffin-Lowry and "ATRX" syndromes, and the disorders of imprinting, Angelman and Prader-Willi syndromes. NDDs have been termed "synaptopathies" in reference to structural and functional disturbance of synaptic plasticity, several involve abnormal Ras-Kinase signalling ("rasopathies"), and many are characterized by disrupted cerebral connectivity and an imbalance between excitatory and inhibitory transmission. However, at a different level of integration, NDDs are accompanied by aberrant "epigenetic" regulation of processes critical for normal and orderly development of the brain. Epigenetics refers to potentially-heritable (by mitosis and/or meiosis) mechanisms controlling gene expression without changes in DNA sequence. In certain NDDs, prototypical epigenetic processes of DNA methylation and covalent histone marking are impacted. Conversely, others involve anomalies in chromatin-modelling, mRNA splicing/editing, mRNA translation, ribosome biogenesis and/or the regulatory actions of small nucleolar RNAs and micro-RNAs. Since epigenetic mechanisms are modifiable, this raises the hope of novel therapy, though questions remain concerning efficacy and safety. The above issues are critically surveyed in this review, which advocates a broad-based epigenetic framework for understanding and ultimately treating a diverse assemblage of NDDs ("epigenopathies") lying at the interface of genetic, developmental and environmental processes. This article is part of the Special Issue entitled 'Neurodevelopmental Disorders'.
Collapse
Affiliation(s)
- Mark J Millan
- Unit for Research and Discovery in Neuroscience, IDR Servier, 125 chemin de ronde, 78290 Croissy sur Seine, Paris, France.
| |
Collapse
|