1
|
Zhang X, Wang W, Yu X, Liu Y, Li W, Yang H, Cui Y, Tian X. Biological composition analysis of a natural medicine, Faeces Vespertilionis, with complex sources using DNA metabarcoding. Sci Rep 2022; 12:375. [PMID: 35013500 PMCID: PMC8748881 DOI: 10.1038/s41598-021-04387-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 12/20/2021] [Indexed: 11/09/2022] Open
Abstract
Faeces Vespertilionis is a commonly used fecal traditional Chinese medicine. Traditionally, it is identified relying only on morphological characters. This poses a serious challenge to the composition analysis accuracy of this complex biological mixture. Thus, for quality control purposes, an accurate and effective method should be provided for taxonomic identification of Faeces Vespertilionis. In this study, 26 samples of Faeces Vespertilionis from ten provinces in China were tested using DNA metabarcoding. Seven operational taxonomic units (OTUs) were detected as belonging to bats. Among them, Hipposideros armiger (Hodgson, 1835) and Rhinolophus ferrumequinum (Schober and Grimmberger, 1997) were the main host sources of Faeces Vespertilionis samples, with average relative abundances of 59.3% and 24.1%, respectively. Biodiversity analysis showed that Diptera and Lepidoptera were the most frequently consumed insects. At the species level, 19 taxa were clearly identified. Overall, our study used DNA metabarcoding to analyze the biological composition of Faeces Vespertilionis, which provides a new idea for the quality control of this special traditional Chinese medicine.
Collapse
Affiliation(s)
- Xiaoying Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wenxiu Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaolei Yu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuxia Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wenhui Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Hongxia Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ying Cui
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Xiaoxuan Tian
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
2
|
Moonlight controls lunar-phase-dependency and regular oscillation of clock gene expressions in a lunar-synchronized spawner fish, Goldlined spinefoot. Sci Rep 2018; 8:6208. [PMID: 29670140 PMCID: PMC5906463 DOI: 10.1038/s41598-018-24538-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 04/06/2018] [Indexed: 12/25/2022] Open
Abstract
Goldlined spinefoot, Siganus guttatus, inhabits tropical and subtropical waters and synchronizes its spawning around the first quarter moon likely using an hourglass-like lunar timer. In previous studies, we have found that clock genes (Cryptochrome3 and Period1) could play the role of state variable in the diencephalon when determining the lunar phase for spawning. Here, we identified three Cry, two Per, two Clock, and two Bmal genes in S. guttatus and investigated their expression patterns in the diencephalon and pituitary gland. We further evaluated the effect on their expression patterns by daily interruptions of moonlight stimuli for 1 lunar cycle beginning at the new moon. It significantly modified the expression patterns in many of the examined clock(-related) genes including Cry3 in the diencephalon and/or pituitary gland. Acute interruptions of moonlight around the waxing gibbous moon upregulated nocturnal expressions of Cry1b and Cry2 in the diencephalon and pituitary gland, respectively, but did not affect expression levels of the other clock genes. These results highlighted the importance of repetitive moonlight illumination for stable or lunar-phase-specific daily expression of clock genes in the next lunar cycle that may be important for the lunar-phase-synchronized spawning on the next first quarter moon.
Collapse
|
3
|
Numata H, Miyazaki Y, Ikeno T. Common features in diverse insect clocks. ZOOLOGICAL LETTERS 2015; 1:10. [PMID: 26605055 PMCID: PMC4604113 DOI: 10.1186/s40851-014-0003-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 10/23/2014] [Indexed: 06/05/2023]
Abstract
This review describes common features among diverse biological clocks in insects, including circadian, circatidal, circalunar/circasemilunar, and circannual clocks. These clocks control various behaviors, physiological functions, and developmental events, enabling adaptation to periodic environmental changes. Circadian clocks also function in time-compensation for celestial navigation and in the measurement of day or night length for photoperiodism. Phase response curves for such clocks reported thus far exhibit close similarities; specifically, the circannual clock in Anthrenus verbasci shows striking similarity to circadian clocks in its phase response. It is suggested that diverse biological clocks share physiological properties in their phase responses irrespective of period length. Molecular and physiological mechanisms are best understood for the optic-lobe and mid-brain circadian clocks, although there is no direct evidence that these clocks are involved in rhythmic phenomena other than circadian rhythms in daily events. Circadian clocks have also been localized in peripheral tissues, and research on their role in various rhythmic phenomena has been started. Although clock genes have been identified as controllers of circadian rhythms in daily events, some of these genes have also been shown to be involved in photoperiodism and possibly in time-compensated celestial navigation. In contrast, there is no experimental evidence indicating that any known clock gene is involved in biological clocks other than circadian clocks.
Collapse
Affiliation(s)
- Hideharu Numata
- />Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
| | - Yosuke Miyazaki
- />Graduate School of Education, Ashiya University, Ashiya, 659-8511 Japan
| | - Tomoko Ikeno
- />Department of Psychology, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
4
|
Matsuno T, Miyazaki Y, Muramatsu N, Numata H. Circannual pupation timing is not correlated with circadian period in the varied carpet beetleAnthrenus verbasci. BIOL RHYTHM RES 2013. [DOI: 10.1080/09291016.2013.770293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
5
|
Hut RA, Paolucci S, Dor R, Kyriacou CP, Daan S. Latitudinal clines: an evolutionary view on biological rhythms. Proc Biol Sci 2013; 280:20130433. [PMID: 23825204 PMCID: PMC3712436 DOI: 10.1098/rspb.2013.0433] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 06/03/2013] [Indexed: 11/12/2022] Open
Abstract
Properties of the circadian and annual timing systems are expected to vary systematically with latitude on the basis of different annual light and temperature patterns at higher latitudes, creating specific selection pressures. We review literature with respect to latitudinal clines in circadian phenotypes as well as in polymorphisms of circadian clock genes and their possible association with annual timing. The use of latitudinal (and altitudinal) clines in identifying selective forces acting on biological rhythms is discussed, and we evaluate how these studies can reveal novel molecular and physiological components of these rhythms.
Collapse
Affiliation(s)
- Roelof A Hut
- Chronobiology unit, Centre for Behaviour and Neuroscience, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
6
|
Helm B, Ben-Shlomo R, Sheriff MJ, Hut RA, Foster R, Barnes BM, Dominoni D. Annual rhythms that underlie phenology: biological time-keeping meets environmental change. Proc Biol Sci 2013; 280:20130016. [PMID: 23825201 DOI: 10.1098/rspb.2013.0016] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Seasonal recurrence of biological processes (phenology) and its relationship to environmental change is recognized as being of key scientific and public concern, but its current study largely overlooks the extent to which phenology is based on biological time-keeping mechanisms. We highlight the relevance of physiological and neurobiological regulation for organisms' responsiveness to environmental conditions. Focusing on avian and mammalian examples, we describe circannual rhythmicity of reproduction, migration and hibernation, and address responses of animals to photic and thermal conditions. Climate change and urbanization are used as urgent examples of anthropogenic influences that put biological timing systems under pressure. We furthermore propose that consideration of Homo sapiens as principally a 'seasonal animal' can inspire new perspectives for understanding medical and psychological problems.
Collapse
Affiliation(s)
- Barbara Helm
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK.
| | | | | | | | | | | | | |
Collapse
|