1
|
Liu XY, Ke BW, Qin Y, Wang FP. The diterpenoid alkaloids. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2022; 87:1-360. [PMID: 35168778 DOI: 10.1016/bs.alkal.2021.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The diterpenoid alkaloids are a family of extremely important natural products that have long been a research hotspot due to their myriad of intricate structures and diverse biological properties. This chapter systematically summarizes the past 11 years (2009-2019) of studies on the diterpenoid alkaloids, including the "so-called" atypical ones, covering the classification and biogenetic relationships, phytochemistry together with 444 new alkaloids covering 32 novel skeletons and the corrected structures, chemical reactions including conversion toward toxoids, synthetic studies, as well as biological activities. It should be noted that the synthetic studies, especially the total syntheses of various diterpenoid alkaloids, are for the first time reviewed in this treatise. This chapter, in combination with our four previous reviews in volumes 42, 59, 67, and 69, will present to the readers a more completed and updated profile of the diterpenoid alkaloids.
Collapse
Affiliation(s)
- Xiao-Yu Liu
- Department of Chemistry of Medicinal Natural Products, West China School of Pharmacy, Sichuan University, Chengdu, China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Bo-Wen Ke
- West China Hospital, Sichuan University, Chengdu, China
| | - Yong Qin
- Department of Chemistry of Medicinal Natural Products, West China School of Pharmacy, Sichuan University, Chengdu, China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China.
| | - Feng-Peng Wang
- Department of Chemistry of Medicinal Natural Products, West China School of Pharmacy, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Luan S, Gao Y, Liang X, Zhang L, Wu Q, Hu Y, Yin L, He C, Liu S. Aconitine linoleate, a natural lipo-diterpenoid alkaloid, stimulates anti-proliferative activity reversing doxorubicin resistance in MCF-7/ADR breast cancer cells as a selective topoisomerase IIα inhibitor. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:65-76. [PMID: 34727218 DOI: 10.1007/s00210-021-02172-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/21/2021] [Indexed: 11/27/2022]
Abstract
Aconitine linoleate (1) is a lipo-diterpenoid alkaloid, isolated from Aconitum sinchiangense W. T. Wang. The study aimed at investigating the anti-proliferative efficacy and the underlying mechanisms of 1 against MCF-7 and MCF-7/ADR cells, as well as obvious the safety evaluation in vivo. The cytotoxic activities of 1 were measured in vitro. Also, we investigated the latent mechanism of 1 by cell cycle analysis in MCF-7/ADR cells and topo I and topo IIα inhibition assay. Molecular docking is done by Discovery Studio 3.5 and Autodock vina 1.1.2. Finally, the acute toxicity of 1 was detected on mice. 1 exhibited significant antitumor activity against both MCF-7 and MCF-7/ADR cells, with IC50 values of 7.58 and 7.02 μM, which is 2.38 times and 5.05 times more active, respectively than etoposide in both cell lines, and being 9.63 times more active than Adriamycin in MCF-7/ADR cell lines. The molecular docking and the topo inhibition test found that it is a selective inhibitor of topoisomerase IIα. Moreover, activation of the damage response pathway of the DNA leads to cell cycle arrest at the G0G1 phase. Furthermore, the in vivo acute toxicity of 1 in mice displayed lower toxicity than aconitine, with LD50 of 2.2 × 105 nmol/kg and only slight pathological changes in liver and lung tissue, 489 times safer than aconitine. In conclusion, compared with aconitine, 1 has more significant anti-proliferative activity against MCF-7 and MCF-7/ADR cells and greatly reduces in vivo toxicity, which suggests this kind of lipo-alkaloids is powerful and promising antitumor compounds for breast cancer.
Collapse
Affiliation(s)
- Shangxian Luan
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Yingying Gao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.
| | - Li Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Qiang Wu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Yunkai Hu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Lizi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Changliang He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Shixi Liu
- School of Chemical Science and Technology, Yunnan University, Kunming, People's Republic of China
| |
Collapse
|
3
|
Luan S, Gao Y, Liang X, Zhang L, Yin L, He C, Liu S, Yin Z, Yue G, Zou Y, Li L, Song X, Lv C, Zhang W, Jing B. Synthesis and structure-activity relationship of lipo-diterpenoid alkaloids with potential target of topoisomerase IIα for breast cancer treatment. Bioorg Chem 2021; 109:104699. [PMID: 33611138 DOI: 10.1016/j.bioorg.2021.104699] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/24/2021] [Accepted: 01/30/2021] [Indexed: 12/24/2022]
Abstract
Aconitine linoleate (11) isolated from the Aconitum sinchiangense W. T. Wang exhibited significant anti-tumor activity. Based on this, a series of novel lipo-diterpenoid alkaloids were synthesized and evaluated for their anticancer activities against MCF-7 and MCF-7/ADR cell lines. Seventeen compounds, including 18-20, 22, 24-32, 36, 39, 41-42 possessed higher anti-proliferative activities (IC50 < 20 μM) against MCF-7 cell lines, which were better than the reference drug etoposide (IC50 = 18.01 ± 1.64 μM), among which compound 24 (IC50 = 4.00 ± 0.30 μM) was found to be the most potent derivative, being 4.5-fold more active than etoposide. Meanwhile, eighteen compounds, including 18-22, 24, 26-32, 36, 38-39, 41-42 presented excellent activities (IC50 < 20 μM) against MCF-7/ADR cell lines, better than etoposide (IC50 = 35.48 ± 0.29 μM) and doxorubicin (IC50 = 67.61 ± 6.5 μM). The most potent compound (19) was 13.5- and 25.7-fold more active than etoposide and doxorubicin against MCF-7/ADR cell lines, respectively. The structure-activity relationship (SAR) studies indicated that the 3-OH, 8-lipo, 14-benzene ring, and nitrogen atom with proper alkaline are crucial elements for anti-proliferative activity of target lipo-diterpenoid compounds. The proper length, the double bonds or di-fluoro-substituted at C-8 fatty acid chain, the para-donating electron group on 14-benzene group, and 13-OH are all favorable for the enhancement of anti-proliferative activities. In conclusion, the introduction of the 8-lipo group into aconitine leads to significant increase of anti-proliferative activity against MCF-7 and MCF-7/ADR cells, which suggests these kinds of lipo-alkaloids are powerful and promising antitumor compounds for breast cancer, especially for drug-resistant breast cancer.
Collapse
Affiliation(s)
- Shangxian Luan
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yingying Gao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Li Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Lizi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Changliang He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Shixi Liu
- School of Chemical Science and Technology, Yunnan University, Kunming, PR China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Guizhou Yue
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Cheng Lv
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Wei Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Bo Jing
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| |
Collapse
|
4
|
He Y, Narmon T, Wu D, Li Z, Van Meervelt L, Van der Eycken EV. A gold-triggered dearomative spirocarbocyclization/Diels–Alder reaction cascade towards diverse bridged N-heterocycles. Org Biomol Chem 2019; 17:9529-9536. [DOI: 10.1039/c9ob01967g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient chemo- and diastereoselective gold-triggered post-Ugi non-oxidativeortho-dearomative spirocarbocyclization/Diels–Alder reaction cascade sequence has been developed to deliver diverse bridged polycyclic N-heterocycles.
Collapse
Affiliation(s)
- Yi He
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC)
- Department of Chemistry
- KU Leuven
- Leuven
- Belgium
| | - Thomas Narmon
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC)
- Department of Chemistry
- KU Leuven
- Leuven
- Belgium
| | - Danjun Wu
- College of Pharmaceutical Science
- Zhejiang University of Technology
- 310014 Hangzhou
- China
| | - Zhenghua Li
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC)
- Department of Chemistry
- KU Leuven
- Leuven
- Belgium
| | - Luc Van Meervelt
- Biomolecular Architecture
- Department of Chemistry
- KU Leuven
- Leuven
- Belgium
| | - Erik V. Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC)
- Department of Chemistry
- KU Leuven
- Leuven
- Belgium
| |
Collapse
|
5
|
Shi Y, Wang Q, Gao S. Recent advances in the intramolecular Mannich reaction in natural products total synthesis. Org Chem Front 2018. [DOI: 10.1039/c7qo01079f] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review focuses on selected applications of the intramolecular Mannich reaction as a key step in the total synthesis of natural products (2000–2017).
Collapse
Affiliation(s)
- Yingbo Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- China
| | - Qiaoling Wang
- East China Normal University Library
- Shanghai 200062
- China
| | - Shuanhu Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development
| |
Collapse
|