1
|
Doğulu N, Köse E, Ceylaner S, Kasapkara ÇS, Bozaci AE, Oncul U, Eminoğlu FT. Mitochondrial DNA Depletion Syndromes Gene Panel versus Clinical Exome Sequencing in Children with Suspected Mitochondrial Hepatopathies. Mol Syndromol 2024; 15:450-463. [PMID: 39634245 PMCID: PMC11614429 DOI: 10.1159/000539034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/20/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction Mitochondrial DNA depletion syndromes (MDDSs) are a group of clinically and genetically heterogeneous disorders. In the present study, we aimed to investigate the frequency of MDDS in children under the age of 5 years with suspected mitochondrial hepatopathy and to evaluate this group of patients using MDDS gene panel and clinical exome sequencing (CES) genetic analysis methods. Methods Patients under 5 years of age who were clinically suspected to have mitochondrial hepatopathy and had neonatal acute liver failure, hepatic steatohepatitis, cholestasis, or cirrhosis with chronic liver failure of insidious onset were included. Results Forty patients (20 female, 50%) were enrolled, with a median age of 102 [57-263.8] days. Icteric appearance was identified in 28 (70%) of the patients, hepatomegaly in 27 (67.5%), splenomegaly in 10 (25.0%), and hypotonicity in 10 (25.0%); moreover, elevated international normalized ratio was detected in 77.5%, cholestasis in 77.5%, and elevated lactate levels in 62.5%. Molecular genetic diagnosis was made in 9 patients (22.5%) with the MDDS gene panel and in 17 (42.5%) patients with the CES analysis. All patients diagnosed with MDDS had a history of parental consanguinity, while the rate in those without MDDS was 54.8% (p = 0.012). High lactate levels were identified in all those with MDDS, but in only 51.6% of those without MDDS (p = 0.020). Conclusion Present study revealed that demographic findings and laboratory assessments are insufficient to diagnose genetically inherited diseases in children presenting with hepatic involvement. While one-fifth of the patients with suspected mitochondrial hepatopathies were diagnosed with MDDS, it is revealed that around half of patients can be diagnosed with CES panel.
Collapse
Affiliation(s)
- Neslihan Doğulu
- Department of Pediatric Metabolism, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Engin Köse
- Department of Pediatric Metabolism, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Serdar Ceylaner
- Intergen Genetics and Rare Diseases Diagnosis Research and Application Center, Ankara, Turkey
| | - Çiğdem Seher Kasapkara
- Department of Pediatric Metabolism, Ankara Yıldırım Beyazıt University Faculty of Medicine, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Ayşe Ergul Bozaci
- Division of Pediatric Nutrition and Metabolism, Department of Pediatrics, Manisa City Hospital, Manisa, Turkey
| | - Ummuhan Oncul
- Department of Pediatric Metabolism, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Fatma Tuba Eminoğlu
- Department of Pediatric Metabolism, Ankara University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
2
|
Mauriello A, Correra A, Molinari R, Del Vecchio GE, Tessitore V, D’Andrea A, Russo V. Mitochondrial Dysfunction in Atrial Fibrillation: The Need for a Strong Pharmacological Approach. Biomedicines 2024; 12:2720. [PMID: 39767627 PMCID: PMC11727148 DOI: 10.3390/biomedicines12122720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/12/2025] Open
Abstract
Despite great progress in treating atrial fibrillation (AF), especially with the development of increasingly effective invasive techniques for AF ablation, many unanswered questions remain regarding the pathogenic mechanism of the arrhythmia and its prevention methods. The development of AF is based on anatomical and functional alterations in the cardiomyocyte resulting from altered ionic fluxes and cardiomyocyte electrophysiology. Electric instability and electrical remodeling underlying the arrhythmia may result from oxidative stress, also caused by possible mitochondrial dysfunction. The role of mitochondrial dysfunction in the pathogenesis of AF is not yet fully elucidated; however, the reduction in AF burden after therapeutic interventions that improve mitochondrial fitness tends to support this concept. This selected review aims to summarize the mechanisms of mitochondrial dysfunction related to AF and the current pharmacological treatment options that target mitochondria to prevent or improve the outcome of AF.
Collapse
Affiliation(s)
- Alfredo Mauriello
- Cardiology Unit, Department of Medical and Translational Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (A.M.); (R.M.); (G.E.D.V.); (V.T.)
- Cardiology and Intensive Care Unit, Department of Cardiology, Umberto I Hospital, 84014 Nocera Inferiore, Italy;
| | - Adriana Correra
- Intensive Cardiac Care Unit, San Giuseppe Moscati Hospital, ASL Caserta, 81031 Aversa, Italy;
| | - Riccardo Molinari
- Cardiology Unit, Department of Medical and Translational Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (A.M.); (R.M.); (G.E.D.V.); (V.T.)
| | - Gerardo Elia Del Vecchio
- Cardiology Unit, Department of Medical and Translational Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (A.M.); (R.M.); (G.E.D.V.); (V.T.)
| | - Viviana Tessitore
- Cardiology Unit, Department of Medical and Translational Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (A.M.); (R.M.); (G.E.D.V.); (V.T.)
| | - Antonello D’Andrea
- Cardiology and Intensive Care Unit, Department of Cardiology, Umberto I Hospital, 84014 Nocera Inferiore, Italy;
| | - Vincenzo Russo
- Cardiology Unit, Department of Medical and Translational Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (A.M.); (R.M.); (G.E.D.V.); (V.T.)
| |
Collapse
|
3
|
Adelizzi A, Giri A, Di Donfrancesco A, Boito S, Prigione A, Bottani E, Bollati V, Tiranti V, Persico N, Brunetti D. Fetal and obstetrics manifestations of mitochondrial diseases. J Transl Med 2024; 22:853. [PMID: 39313811 PMCID: PMC11421203 DOI: 10.1186/s12967-024-05633-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
During embryonic and neonatal development, mitochondria have essential effects on metabolic and energetic regulation, shaping cell fate decisions and leading to significant short- and long-term effects on embryonic and offspring health. Therefore, perturbation on mitochondrial function can have a pathological effect on pregnancy. Several shreds of evidence collected in preclinical models revealed that severe mitochondrial dysfunction is incompatible with life or leads to critical developmental defects, highlighting the importance of correct mitochondrial function during embryo-fetal development. The mechanism impairing the correct development is unknown and may include a dysfunctional metabolic switch in differentiating cells due to decreased ATP production or altered apoptotic signalling. Given the central role of mitochondria in embryonic and fetal development, the mitochondrial dysfunction typical of Mitochondrial Diseases (MDs) should, in principle, be detectable during pregnancy. However, little is known about the clinical manifestations of MDs in embryonic and fetal development. In this manuscript, we review preclinical and clinical evidence suggesting that MDs may affect fetal development and highlight the fetal and maternal outcomes that may provide a wake-up call for targeted genetic diagnosis.
Collapse
Affiliation(s)
- Alessia Adelizzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Anastasia Giri
- Fetal Medicine and Surgery Service, Ospedale Maggiore Policlinico, Fondazione IRCCS Ca' Granda, Milan, Italy
| | - Alessia Di Donfrancesco
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Simona Boito
- Fetal Medicine and Surgery Service, Ospedale Maggiore Policlinico, Fondazione IRCCS Ca' Granda, Milan, Italy
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Emanuela Bottani
- Department of Diagnostics and Public Health, University of Verona, Verona, 37124, Italy
| | - Valentina Bollati
- Dipartimento di Scienze Cliniche e di Comunità, Dipartimento di Eccellenza, University of Milan, Milan, 2023-2027, Italy
| | - Valeria Tiranti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Nicola Persico
- Fetal Medicine and Surgery Service, Ospedale Maggiore Policlinico, Fondazione IRCCS Ca' Granda, Milan, Italy.
- Dipartimento di Scienze Cliniche e di Comunità, Dipartimento di Eccellenza, University of Milan, Milan, 2023-2027, Italy.
| | - Dario Brunetti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy.
- Dipartimento di Scienze Cliniche e di Comunità, Dipartimento di Eccellenza, University of Milan, Milan, 2023-2027, Italy.
| |
Collapse
|
4
|
Haque S, Crawley K, Schofield D, Shrestha R, Sue CM. Cascade testing in mitochondrial diseases: a cross-sectional retrospective study. BMC Neurol 2024; 24:343. [PMID: 39272026 PMCID: PMC11396135 DOI: 10.1186/s12883-024-03850-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Cascade testing can offer improved surveillance and timely introduction of clinical management for the at-risk biological relatives. Data on cascade testing and costs in mitochondrial diseases are lacking. To address this gap, we performed a cross-sectional retrospective study to provide a framework for cascade testing in mitochondrial diseases, to estimate the eligibility versus real-time uptake of cascade testing and to evaluate the cost of the genetic diagnosis of index cases and the cost of predictive cascade testing. METHODS Data was collected through retrospective chart review. The variant inheritance pattern guided the identification of eligible first-degree relatives: (i) Males with mitochondrial DNA (mtDNA) single nucleotide variants (SNVs) - siblings and mothers. (ii) Females with mtDNA SNVs - siblings, mothers and offspring. (iii) Autosomal Dominant (AD) nuclear DNA (nDNA) variants - siblings, offspring and both parents. (iv) Autosomal Recessive (AR) nDNA variants - siblings. RESULTS We recruited 99 participants from the Adult Mitochondrial Disease Clinic in Sydney. The uptake of cascade testing was 55.2% in the mtDNA group, 55.8% in the AD nDNA group and 0% in AR nDNA group. Of the relatives in mtDNA group who underwent cascade testing, 65.4% were symptomatic, 20.5% were oligosymptomatic and 14.1% were asymptomatic. The mean cost of cascade testing for eligible first-degree relatives (mtDNA group: $694.7; AD nDNA group: $899.1) was lower than the corresponding index case (mtDNA group: $4578.4; AD nDNA group: $5715.1) (p < 0.001). CONCLUSION The demand for cascade testing in mitochondrial diseases varies according to the genotype and inheritance pattern. The real-time uptake of cascade testing can be influenced by multiple factors. Early diagnosis of at-risk biological relatives of index cases through cascade testing, confirms the diagnosis in those who are symptomatic and facilitates implementation of surveillance strategies and clinical care at an early stage of the disease.
Collapse
Affiliation(s)
- Sameen Haque
- Nepean Hospital, Derby Street, Kingswood, NSW, 2747, Australia.
- The Kolling Institute, Royal North Shore Hospital, Reserve Road, St Leonards, NSW, 2065, Australia.
| | - Karen Crawley
- The Kolling Institute, Royal North Shore Hospital, Reserve Road, St Leonards, NSW, 2065, Australia
- Neuroscience Research Australia (NeuRA), Margarete Ainsworth Building, Barker Street, Randwick, NSW, 2031, Australia
| | - Deborah Schofield
- Centre for Economic Impacts of Genomic Medicine (GenIMPACT), Macquarie Business School, Macquarie University, Eastern Rd, Macquarie Park, NSW, 2109, Australia
| | - Rupendra Shrestha
- Centre for Economic Impacts of Genomic Medicine (GenIMPACT), Macquarie Business School, Macquarie University, Eastern Rd, Macquarie Park, NSW, 2109, Australia
| | - Carolyn M Sue
- Neuroscience Research Australia (NeuRA), Margarete Ainsworth Building, Barker Street, Randwick, NSW, 2031, Australia
- Faculty of Medicine and Health, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| |
Collapse
|
5
|
Haque S, Crawley K, Davis R, Schofield D, Shrestha R, Sue CM. Clinical drivers of hospitalisation in patients with mitochondrial diseases. BMJ Neurol Open 2024; 6:e000717. [PMID: 38868460 PMCID: PMC11168164 DOI: 10.1136/bmjno-2024-000717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024] Open
Abstract
Background Mitochondrial diseases in adults are generally chronic conditions with a wide spectrum of severity contributing to disease burden and healthcare resource utilisation. Data on healthcare resource utilisation in mitochondrial diseases are limited. Objectives We performed a retrospective longitudinal study to investigate the clinical drivers of hospitalisation in adult patients with mitochondrial diseases to better understand healthcare resource utilisation. Methods We recruited participants from our specialised Mitochondrial Disease Clinic in Sydney, Australia between September 2018 and December 2021. We performed a retrospective chart review for the period 2013-2022 considering emergency department (ED) and/or hospital admission notes, as well as discharge summaries. We used multiple linear regression models to examine the association between the type of presenting symptom(s) and duration of hospital stay and frequency of admissions, while adjusting for relevant covariates. Results Of the 99 patients considered, the duration of hospitalisation ranged from 0 to 116 days per participant and the number of admissions ranged from 0 to 21 per participant. Participants with one or more mitochondrial disease-associated admissions constituted 52% of the study cohort. 13% of the participants presented to the ED without requiring an admission and 35% never attended the ED or required a hospital admission during this period. Neurological (p<0.0001), gastroenterological (p=0.01) and symptoms categorised as 'other' (p<0.0001) were the main presentations driving the total number of days admitted to hospital. A statistically significant association was evident for the number of admissions and all types of presenting symptoms (p<0.0001). Conclusion There are variable reasons for hospitalisation in adults with mitochondrial diseases, with neurological and gastroenterological presentations being associated with prolonged and complex hospitalisation. A better understanding of clinical drivers such as these allows for better informed and well-coordinated management aimed at optimising healthcare resource utilisation.
Collapse
Affiliation(s)
- Sameen Haque
- Neurology, Nepean Hospital, Kingswood, New South Wales, Australia
- Neurogenetics, Kolling Institute of Medical Research, St Leonards, New South Wales, Australia
| | - Karen Crawley
- Neurogenetics, Kolling Institute of Medical Research, St Leonards, New South Wales, Australia
| | - Ryan Davis
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Neurogenetics Research Group, Kolling Institute of Medical Research, St Leonards, New South Wales, Australia
| | - Deborah Schofield
- Centre for Economic Impacts of Genomic Medicine (GenIMPACT), Macquarie University, Sydney, New South Wales, Australia
| | - Rupendra Shrestha
- Centre for Economic Impacts of Genomic Medicine (GenIMPACT), Macquarie University, Sydney, New South Wales, Australia
| | - Carolyn M Sue
- Kinghorn Chair, Neurodegeneration, Neuroscience Research Australia, Randwick, New South Wales, Australia
- Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Samir S. Human DNA Mutations and their Impact on Genetic Disorders. Recent Pat Biotechnol 2024; 18:288-315. [PMID: 37936448 DOI: 10.2174/0118722083255081231020055309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/25/2023] [Accepted: 09/18/2023] [Indexed: 11/09/2023]
Abstract
DNA is a remarkably precise medium for copying and storing biological information. It serves as a design for cellular machinery that permits cells, organs, and even whole organisms to work. The fidelity of DNA replication results from the action of hundreds of genes involved in proofreading and damage repair. All human cells can acquire genetic changes in their DNA all over life. Genetic mutations are changes to the DNA sequence that happen during cell division when the cells make copies of themselves. Mutations in the DNA can cause genetic illnesses such as cancer, or they could help humans better adapt to their environment over time. The endogenous reactive metabolites, therapeutic medicines, and an excess of environmental mutagens, such as UV rays all continuously damage DNA, compromising its integrity. One or more chromosomal alterations and point mutations at a single site (monogenic mutation) including deletions, duplications, and inversions illustrate such DNA mutations. Genetic conditions can occur when an altered gene is inherited from parents, which increases the risk of developing that particular condition, or some gene alterations can happen randomly. Moreover, symptoms of genetic conditions depend on which gene has a mutation. There are many different diseases and conditions caused by mutations. Some of the most common genetic conditions are Alzheimer's disease, some cancers, cystic fibrosis, Down syndrome, and sickle cell disease. Interestingly, scientists find that DNA mutations are more common than formerly thought. This review outlines the main DNA mutations that occur along the human genome and their influence on human health. The subject of patents pertaining to DNA mutations and genetic disorders has been brought up.
Collapse
Affiliation(s)
- Safia Samir
- Department of Biochemistry and Molecular Biology, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
7
|
Calame DG, Emrick LT. Functional genomics and small molecules in mitochondrial neurodevelopmental disorders. Neurotherapeutics 2024; 21:e00316. [PMID: 38244259 PMCID: PMC10903096 DOI: 10.1016/j.neurot.2024.e00316] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/16/2023] [Accepted: 01/02/2024] [Indexed: 01/22/2024] Open
Abstract
Mitochondria are critical for brain development and homeostasis. Therefore, pathogenic variation in the mitochondrial or nuclear genome which disrupts mitochondrial function frequently results in developmental disorders and neurodegeneration at the organismal level. Large-scale application of genome-wide technologies to individuals with mitochondrial diseases has dramatically accelerated identification of mitochondrial disease-gene associations in humans. Multi-omic and high-throughput studies involving transcriptomics, proteomics, metabolomics, and saturation genome editing are providing deeper insights into the functional consequence of mitochondrial genomic variation. Integration of deep phenotypic and genomic data through allelic series continues to uncover novel mitochondrial functions and permit mitochondrial gene function dissection on an unprecedented scale. Finally, mitochondrial disease-gene associations illuminate disease mechanisms and thereby direct therapeutic strategies involving small molecules and RNA-DNA therapeutics. This review summarizes progress in functional genomics and small molecule therapeutics in mitochondrial neurodevelopmental disorders.
Collapse
Affiliation(s)
- Daniel G Calame
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | - Lisa T Emrick
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
8
|
Haque S, Crawley K, Shrestha R, Schofield D, Sue CM. Healthcare resource utilization of patients with mitochondrial disease in an outpatient hospital setting. Orphanet J Rare Dis 2023; 18:129. [PMID: 37246228 DOI: 10.1186/s13023-023-02746-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/18/2023] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Mitochondrial diseases present as multi-system disorders requiring a comprehensive multidisciplinary approach. The data on healthcare resource utilization associated with mitochondrial diseases and the clinical drivers of these costs are limited including for the out-patient setting where the majority of the clinical care for mitochondrial disease patients occurs. We performed a cross-sectional retrospective study of out-patient healthcare resource utilization and costs for patients with a confirmed diagnosis of mitochondrial disease. METHODS We recruited participants from the Mitochondrial Disease Clinic in Sydney and stratified them into three groups: those with mitochondrial DNA (mtDNA) mutations (Group 1), those with nuclear DNA (nDNA) mutations and the predominant phenotype of chronic progressive external ophthalmoplegia (CPEO) or optic atrophy (Group 2) and those without a confirmed genetic diagnosis but clinical criteria and muscle biopsy findings supportive of a diagnosis of mitochondrial disease (Group 3). Data was collected through retrospective chart review and out-patient costs were calculated using the Medicare Benefits Schedule. RESULTS We analyzed the data from 91 participants and found that Group 1 had the greatest average out-patient costs per person per annum ($838.02; SD 809.72). Neurological investigations were the largest driver of outpatient healthcare costs in all groups (average costs per person per annum:-Group 1: $364.11; SD 340.93, Group 2: $247.83; SD 113.86 and Group 3: $239.57; SD 145.69) consistent with the high frequency (94.5%) of neurological symptoms. Gastroenterological and cardiac-related out-patient costs were also major contributors to out-patient healthcare resource utilization in Groups 1 and 3. In Group 2, ophthalmology was the second-most resource intensive specialty ($136.85; SD 173.35). The Group 3 had the greatest average healthcare resource utilization per person over the entire duration of out-patient clinic care ($5815.86; SD 3520.40) most likely due to the lack of a molecular diagnosis and a less customized management approach. CONCLUSION The drivers of healthcare resource utilization are dependent on the phenotype-genotype characteristics. Neurological, cardiac, and gastroenterological costs were the top three drivers in the out-patient clinics unless the patient had nDNA mutations with predominant phenotype of CPEO and/or optic atrophy wherein ophthalmological-related costs were the second most resource intensive driver.
Collapse
Affiliation(s)
- Sameen Haque
- Nepean Hospital, Derby Street, Kingswood, NSW, 2747, Australia.
- The Kolling Institute, Royal North Shore Hospital, Reserve Road, St Leonards, NSW, 2065, Australia.
| | - Karen Crawley
- The Kolling Institute, Royal North Shore Hospital, Reserve Road, St Leonards, NSW, 2065, Australia
| | - Rupendra Shrestha
- Centre for Economic Impacts of Genomic Medicine (GenIMPACT), Macquarie Business School, Macquarie University, Eastern Rd, Macquarie Park, NSW, 2109, Australia
| | - Deborah Schofield
- Centre for Economic Impacts of Genomic Medicine (GenIMPACT), Macquarie Business School, Macquarie University, Eastern Rd, Macquarie Park, NSW, 2109, Australia
| | - Carolyn M Sue
- The Kolling Institute, Royal North Shore Hospital, Reserve Road, St Leonards, NSW, 2065, Australia
- Neuroscience Research Australia, University of New South Wales, Sydney, Australia
| |
Collapse
|
9
|
Felhi R, Monastiri K, Ben Hamida H, Ammar M, Chioukh FZ, Tabarki B, Chouchen J, Fakhfakh F, Tlili A, Mkaouar-Rebai E. First description of the MEGDEHL syndrome in the Tunisian population via whole-exome sequencing: Novel nonsense mutation in SERAC1 gene. Int J Dev Neurosci 2022; 82:736-747. [PMID: 35943861 DOI: 10.1002/jdn.10223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/08/2022] [Accepted: 08/02/2022] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION MEGDEL syndrome is a rare recessive disorder, with about 100 cases reported worldwide, which is defined by 3-methylglutaconic aciduria (MEG), deafness (D), encephalopathy (E) and Leigh-like syndrome (L). When these manifestations were added to hepatopathy (H), the syndrome was labelled as MEGD(H)EL. Mutations in SERAC1 gene encoding a serine active site containing 1 protein were described in patients affected by this syndrome. PATIENTS AND METHODS The present study reports the Whole Exome Sequencing (WES) of the first case of MEGDEHL syndrome in Tunisia in a consanguineous family with three affected children. Bioinformatic analysis was also performed in addition to mtDNA deletion screening and mtDNA copy number quantification in the blood of the indexed case, carried out, respectively by Long-Range PCR and qPCR. RESULTS The WES revealed a novel homozygous nonsense mutation (c.1379G > A; p.W460X) in the SERAC1 gene, which was confirmed by Sanger sequencing. This nonsense mutation was present at a homozygous state in the three affected children and was heterozygous in the parents. In silico analysis using various softwares was performed, and the predictive results supported the pathogenic effect of the identified mutation. Further, long-range PCR and qPCR analyses of the patient's blood excluded any mtDNA deletions or depletions. CONCLUSION Sequencing results and bioinformatic tools confirmed that the novel mutation (p.W460X) in the SERAC1 gene causes the severe phenotype in the studied family with MEGDEHL syndrome.
Collapse
Affiliation(s)
- Rahma Felhi
- Molecular and Functional Genetics Laboratory, Faculty of Science of Sfax, University of Sfax, Sfax, Tunisia
| | - Kamel Monastiri
- Maternity and Neonatology Center of Monastir, Faculty of Medicine of Monastir, Monastir, Tunisia
| | - Hayet Ben Hamida
- Maternity and Neonatology Center of Monastir, Faculty of Medicine of Monastir, Monastir, Tunisia
| | - Marwa Ammar
- Molecular and Functional Genetics Laboratory, Faculty of Science of Sfax, University of Sfax, Sfax, Tunisia
| | - Fatma Zohra Chioukh
- Maternity and Neonatology Center of Monastir, Faculty of Medicine of Monastir, Monastir, Tunisia
| | - Brahim Tabarki
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Jihene Chouchen
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Faiza Fakhfakh
- Molecular and Functional Genetics Laboratory, Faculty of Science of Sfax, University of Sfax, Sfax, Tunisia
| | - Abdelaziz Tlili
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Emna Mkaouar-Rebai
- Molecular and Functional Genetics Laboratory, Faculty of Science of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
10
|
Li L, Ma J, Wang J, Dong L, Liu S. Two Chinese siblings of combined oxidative phosphorylation deficiency 14 caused by compound heterozygous variants in FARS2. Eur J Med Res 2022; 27:184. [PMID: 36155627 PMCID: PMC9511728 DOI: 10.1186/s40001-022-00808-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022] Open
Abstract
Background As a rare mitochondrial disease, combined oxidative phosphorylation deficiency 14 (COXPD14) is caused by biallelic variants in the phenylalanyl-tRNA synthetase 2, mitochondrial gene (FARS2) with clinical features of developmental delay, an elevated lactate level, early-onset encephalopathy, liver failure, and hypotonia. The objectives of this study were to analyze the clinical and molecular features of two Chinese siblings affected with COXPD14, and to review relevant literature. Methods Mutation screening was performed by whole exome sequencing (WES) in combination with Sanger sequencing validation to identify the disease-causing variants of the two patients. Results The two siblings presented with severe clinical features and both progressed aggressively and failed to survive after treatment abandonment. We identified two compound heterozygous FARS2 variants c.925G>A p.Gly309Ser and c.943G>C p.Gly315Arg in this proband, which were inherited from the unaffected father and mother, respectively. In addition, Sanger sequencing confirmed that the elder affected sister carried the same compound heterozygous variants. The c.925G>A p.Gly309Ser variant is known and commonly reported in COXPD14 patients, while c.943G>C p.Gly315Arg is a novel one. Neither of the variants was found in 100 Chinese healthy controls. Both variants were classified as “deleterious” and were located in the highly conserved regions of the protein. The above results suggested that the two variants were likely causative in this COXPD14-affected pedigree. Conclusions Our study expands the mutation spectrum of FARS2 and highlights the importance of genetic testing in the diagnosis of diseases with a wide variety of phenotypes, especially in the differential diagnosis of diseases.
Collapse
Affiliation(s)
- Liangshan Li
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Jianhua Ma
- Department of Reproductive Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jingli Wang
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Liping Dong
- Neonatal Disease Screening Center, Zibo Maternal and Child Health Hospital, Zibo, 255000, China.
| | - Shiguo Liu
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
11
|
Davis RL, Kumar KR, Puttick C, Liang C, Ahmad KE, Edema-Hildebrand F, Park JS, Minoche AE, Gayevskiy V, Mallawaarachchi AC, Christodoulou J, Schofield D, Dinger ME, Cowley MJ, Sue CM. Use of Whole-Genome Sequencing for Mitochondrial Disease Diagnosis. Neurology 2022; 99:e730-e742. [PMID: 35641312 PMCID: PMC9484606 DOI: 10.1212/wnl.0000000000200745] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 04/04/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Mitochondrial diseases (MDs) are the commonest group of heritable metabolic disorders. Phenotypic diversity can make molecular diagnosis challenging, and causative genetic variants may reside in either mitochondrial or nuclear DNA. A single comprehensive genetic diagnostic test would be highly useful and transform the field. We applied whole-genome sequencing (WGS) to evaluate the variant detection rate and diagnostic capacity of this technology with a view to simplifying and improving the MD diagnostic pathway. METHODS Adult patients presenting to a specialist MD clinic in Sydney, Australia, were recruited to the study if they satisfied clinical MD (Nijmegen) criteria. WGS was performed on blood DNA, followed by clinical genetic analysis for known pathogenic MD-associated variants and MD mimics. RESULTS Of the 242 consecutive patients recruited, 62 participants had "definite," 108 had "probable," and 72 had "possible" MD classification by the Nijmegen criteria. Disease-causing variants were identified for 130 participants, regardless of the location of the causative genetic variants, giving an overall diagnostic rate of 53.7% (130 of 242). Identification of causative genetic variants informed precise treatment, restored reproductive confidence, and optimized clinical management of MD. DISCUSSION Comprehensive bigenomic sequencing accurately detects causative genetic variants in affected MD patients, simplifying diagnosis, enabling early treatment, and informing the risk of genetic transmission.
Collapse
|
12
|
Bohra SK, Achar RR, Chidambaram SB, Pellegrino C, Laurin J, Masoodi M, Srinivasan A. CURRENT PERSPECTIVES ON MITOCHONDRIAL DYSFUNCTION IN MIGRAINE. Eur J Neurosci 2022; 56:3738-3754. [PMID: 35478208 DOI: 10.1111/ejn.15676] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/29/2022]
Abstract
Mitochondria is an autonomous organelle that plays a crucial role in the metabolic aspects of a cell. Cortical Spreading Depression (CSD) and fluctuations in the cerebral blood flow have for long been mechanisms underlying migraine. It is a neurovascular disorder with a unilateral manifestation of disturbing, throbbing and pulsating head pain. Migraine affects 2.6 and 21.7% of the general population and is the major cause of partial disability in the age group 15-49. Higher mutation rates, imbalance in concentration of physiologically relevant molecules, oxidative stress biomarkers have been the main themes of discussion in determining the role of mitochondrial disability in migraine. The correlation of migraine with other disorders like hemiplegic migraine, MELAS, TTH, CVS, ischemic stroke and hypertension has helped in the assessment of the physiological and morphogenetic basis of migraine. Here, we have reviewed the different nuances of mitochondrial dysfunction and migraine. The different mtDNA polymorphisms that can affect the generation and transmission of nerve impulse has been highlighted and supported with research findings. In addition to this, the genetic basis of migraine pathogenesis as a consequence of mutations in nuclear DNA that can in turn affect the synthesis of defective mitochondrial proteins is discussed along with a brief overview of epigenetic profile. This review gives an overview of the pathophysiology of migraine and explores mitochondrial dysfunction as a potential underlying mechanism. Also, therapeutic supplements for managing migraine have been discussed at different junctures in this paper.
Collapse
Affiliation(s)
- Shraman Kumar Bohra
- Department of Life Sciences, Pooja Bhagavat Memorial Mahajana Education Center, Mysore
| | - Raghu Ram Achar
- Division of Biochemistry, Faculty of Life Sciences, JSS Academy of Higher Education & Research. Mysore
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore
| | - Christophe Pellegrino
- Institut National de la Santé et de la Recherche Médicale, Institute of Mediterranean Neurobiology, Aix-Marseille University, Marseille, France
| | - Jerome Laurin
- Aix-Marseille University. Sport Science Faculty. Marseille. Institut de Neurobiologie de la Méditerranée, INMED (INSERM- AMU)., France
| | - Mojgan Masoodi
- Institute of Clinical Chemistry, University hospital Bern, Bern
| | - Asha Srinivasan
- Division of Nanoscience & Technology, School of Life Sciences & Centre for Excellence in Molecular Biology and Regenerative Medicine, JSS Academy of Higher Education & Research
| |
Collapse
|
13
|
Kubekina MV, Kalinina AA, Korshunova DS, Bruter AV, Silaeva YY. Models of mitochondrial dysfunction with inducible expression of Polg pathogenic mutant variant. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2022. [DOI: 10.24075/brsmu.2022.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondrial dysfunctions, which underlie many systemic diseases in animals and humans, may arise from accumulation of mutations in the mitochondrial genome. PolG-alpha enzyme encoded by Polg gene is crucial for replication and repair of the mitochondrial genome. The aim of this study was to assess the possible role of Polg mutations in mitochondrial dysfunctions using in vitro and in vivo animal models. The experiments involved transgenic mice with inducible expression of Polg mutant variant; the methods included cell culture, real time PCR assay, fluorescence flow cytometry, and skeletal muscle functional tests. The results indicate that mouse embryonic fibroblasts (MEFs) expressing Polg pathogenic mutant variant have decreased mitochondrial membrane potential and increased expression of mitophagy markers compared with control cultures. Transgenic animals with systemic expression of the pathogenic variant develop mitochondrial dysfunction which significantly affects muscular performance. In addition, systemic expression of mutated Polg in transgenic animals significantly inhibits expression of TCR subunit α and CD3 coreceptor complex subunits δ and ε in total splenocyte populations and significantly affects cellularity of the thymus without altering its CD4/CD8 subpopulation ratio. Thus, inducible expression of mutated Polg in transgenic animals provides a relevant model for studying mitochondrial dysfunction and its treatment in vitro and in vivo.
Collapse
Affiliation(s)
| | - AA Kalinina
- Blokhin Russian Cancer Research Center, Moscow, Russia
| | | | - AV Bruter
- Institute of Gene Biology, Moscow, Russia
| | - YY Silaeva
- Institute of Gene Biology, Moscow, Russia
| |
Collapse
|
14
|
Denmark D, Ruhoy I, Wittmann B, Ashki H, Koran LM. Altered Plasma Mitochondrial Metabolites in Persistently Symptomatic Individuals after a GBCA-Assisted MRI. TOXICS 2022; 10:56. [PMID: 35202243 PMCID: PMC8879776 DOI: 10.3390/toxics10020056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/24/2022] [Indexed: 12/22/2022]
Abstract
Despite the impressive safety of gadolinium (Gd)-based contrast agents (GBCAs), a small number of patients report the onset of new, severe, ongoing symptoms after even a single exposure-a syndrome termed Gadolinium Deposition Disease (GDD). Mitochondrial dysfunction and oxidative stress have been repeatedly implicated by animal and in vitro studies as mechanisms of Gd/GBCA-related toxicity, and as pathogenic in other diseases with similarities in presentation. Here, we aimed to molecularly characterize and explore potential metabolic associations with GDD symptoms. Detailed clinical phenotypes were systematically obtained for a small cohort of individuals (n = 15) with persistent symptoms attributed to a GBCA-enhanced MRI and consistent with provisional diagnostic criteria for GDD. Global untargeted mass spectroscopy-based metabolomics analyses were performed on plasma samples and examined for relevance with both single marker and pathways approaches. In addition to GDD criteria, frequently reported symptoms resembled those of patients with known mitochondrial-related diseases. Plasma differences compared to a healthy, asymptomatic reference cohort were suggested for 45 of 813 biochemicals. A notable proportion of these are associated with mitochondrial function and related disorders, including nucleotide and energy superpathways, which were over-represented. Although early evidence, coincident clinical and biochemical indications of potential mitochondrial involvement in GDD are remarkable in light of preclinical models showing adverse Gd/GBCA effects on multiple aspects of mitochondrial function. Further research on the potential contributory role of these markers and pathways in persistent symptoms attributed to GBCA exposure is recommended.
Collapse
Affiliation(s)
- DeAunne Denmark
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3710 SW US Veterans Hospital Road, Mail Code R&D40, Portland, OR 97239, USA;
| | - Ilene Ruhoy
- Mount Sinai South Nassau Chiari-EDS Center, 1420 Broadway, Hewlett, NY 11557, USA;
| | - Bryan Wittmann
- Owlstone Medical, 600 Park Offices Drive, Suite 140, Research Triangle Park, NC 27709, USA;
| | - Haleh Ashki
- Prime Genomics, Inc., 319 Bernardo Avenue, Mountain View, CA 94041, USA;
| | - Lorrin M. Koran
- Department of Psychiatry and Behavioral Sciences, OCD Clinic, Stanford University Medical Center, 401 Quarry Road, Stanford, CA 94305, USA
| |
Collapse
|
15
|
Putilina M. Mitochondrial dysfunction. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:48-53. [DOI: 10.17116/jnevro202212209148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Gilloteaux J, Nicaise C, Sprimont L, Bissler J, Finkelstein JA, Payne WR. Leptin receptor defect with diabetes causes skeletal muscle atrophy in female obese Zucker rats where peculiar depots networked with mitochondrial damages. Ultrastruct Pathol 2021; 45:346-375. [PMID: 34743665 DOI: 10.1080/01913123.2021.1983099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Tibialis anterior muscles of 45-week-old female obese Zucker rats with defective leptin receptor and non-insulin dependent diabetes mellitus (NIDDM) showed a significative atrophy compared to lean muscles, based on histochemical-stained section's measurements in the sequence: oxidative slow twitch (SO, type I) < oxidative fast twitch (FOG, type IIa) < fast glycolytic (FG, type IIb). Both oxidative fiber's outskirts resembled 'ragged' fibers and, in these zones, ultrastructure revealed small clusters of endoplasm-like reticulum filled with unidentified electron contrasted compounds, contiguous and continuous with adjacent mitochondria envelope. The linings appeared crenated stabbed by circular patterns resembling those found of ceramides. The same fibers contained scattered degraded mitochondria that tethered electron contrasted droplets favoring larger depots while mitoptosis were widespread in FG fibers. Based on other interdisciplinary investigations on the lipid depots of diabetes 2 muscles made us to propose these accumulated contrasted contents to be made of peculiar lipids, including acyl-ceramides, as those were only found while diabetes 2 progresses in aging obese rats. These could interfere in NIDDM with mitochondrial oxidative energetic demands and muscle functions.
Collapse
Affiliation(s)
- Jacques Gilloteaux
- Department of Anatomical Sciences, St George's University School of Medicine, K B Taylor Global Scholar's Program at the University of Northumbria, School of Health and Life Sciences, Newcastle upon Tyne, UK.,Unité de Recherches de Physiologie Moleculaire (URPHyM) - Narilis, Département de Médecine, Université de Namur, Namur, Belgium.,Department of Anatomy, Northeast Ohio Medical University (Neomed), Rootstown, OH, USA
| | - Charles Nicaise
- Unité de Recherches de Physiologie Moleculaire (URPHyM) - Narilis, Département de Médecine, Université de Namur, Namur, Belgium
| | - Lindsay Sprimont
- Unité de Recherches de Physiologie Moleculaire (URPHyM) - Narilis, Département de Médecine, Université de Namur, Namur, Belgium
| | - John Bissler
- Department of Anatomy, Northeast Ohio Medical University (Neomed), Rootstown, OH, USA.,Division of Nephrology at St. Jude Children's Research Hospital and Le Bonheur Children's Hospital, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Judith A Finkelstein
- Department of Anatomy, Northeast Ohio Medical University (Neomed), Rootstown, OH, USA
| | - Warren R Payne
- Institute for Sport and Health, Footscray Park Campus, Victoria University, Melbourne, VIC, Australia
| |
Collapse
|
17
|
Dziadek MA, Sue CM. Mitochondrial donation: is Australia ready? Med J Aust 2021; 216:118-121. [PMID: 34719038 PMCID: PMC9297849 DOI: 10.5694/mja2.51309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 11/29/2022]
|
18
|
Huddar A, Govindaraj P, Chiplunkar S, Deepha S, Jessiena Ponmalar JN, Philip M, Nagappa M, Narayanappa G, Mahadevan A, Sinha S, Taly AB, Parayil Sankaran B. Serum fibroblast growth factor 21 and growth differentiation factor 15: Two sensitive biomarkers in the diagnosis of mitochondrial disorders. Mitochondrion 2021; 60:170-177. [PMID: 34419687 DOI: 10.1016/j.mito.2021.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/25/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
Mitochondrial disorders are often difficult to diagnose because of diverse clinical phenotypes. FGF-21 and GDF-15 are metabolic hormones and promising biomarkers for the diagnosis of these disorders. This study has systematically evaluated serum FGF-21 and GDF-15 levels by ELISA in a well-defined cohort of patients with definite mitochondrial disorders (n = 30), neuromuscular disease controls (n = 36) and healthy controls (n = 36) and aimed to ascertain their utility in the diagnosis of mitochondrial disorders. Both serum FGF-21 and GDF-15 were significantly elevated in patients with mitochondrial disorders, especially in those with muscle involvement. The levels were higher in patients with mitochondrial deletions (both single and multiple) and translation disorders compared to respiratory chain subunit or assembly factor defects.
Collapse
Affiliation(s)
- Akshata Huddar
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Periyasamy Govindaraj
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | - Shwetha Chiplunkar
- Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Clinical Neurosciences, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Sekar Deepha
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - J N Jessiena Ponmalar
- Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Mariyamma Philip
- Biostatistics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Madhu Nagappa
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Gayathri Narayanappa
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Sanjib Sinha
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Arun B Taly
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Bindu Parayil Sankaran
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; The Children's Hospital at Westmead Clinical School, Sydney Medical School, The Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
19
|
Montano V, Gruosso F, Simoncini C, Siciliano G, Mancuso M. Clinical features of mtDNA-related syndromes in adulthood. Arch Biochem Biophys 2020; 697:108689. [PMID: 33227288 DOI: 10.1016/j.abb.2020.108689] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/06/2020] [Accepted: 11/15/2020] [Indexed: 01/26/2023]
Abstract
Mitochondrial diseases are the most common inheritable metabolic diseases, due to defects in oxidative phosphorylation. They are caused by mutations of nuclear or mitochondrial DNA in genes involved in mitochondrial function. The peculiarity of "mitochondrial DNA genetics rules" in part explains the marked phenotypic variability, the complexity of genotype-phenotype correlations and the challenge of genetic counseling. The new massive genetic sequencing technologies have changed the diagnostic approach, enhancing mitochondrial DNA-related syndromes diagnosis and often avoiding the need of a tissue biopsy. Here we present the most common phenotypes associated with a mitochondrial DNA mutation with the recent advances in diagnosis and in therapeutic perspectives.
Collapse
Affiliation(s)
- V Montano
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy
| | - F Gruosso
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy
| | - C Simoncini
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy
| | - G Siciliano
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy
| | - M Mancuso
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy.
| |
Collapse
|
20
|
Labordiagnostik bei angeborenen Stoffwechselstörungen. Monatsschr Kinderheilkd 2020. [DOI: 10.1007/s00112-020-00938-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Roper T, Harber M, Jones G, Pitceathly RDS, Salama AD. Delayed diagnoses of mitochondrial cytopathies in patients presenting with end stage kidney disease: two case reports. BMC Nephrol 2020; 21:361. [PMID: 32838736 PMCID: PMC7446060 DOI: 10.1186/s12882-020-02002-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 08/03/2020] [Indexed: 11/10/2022] Open
Abstract
Background Up to one third of patients on renal replacement programmes have an unknown cause of kidney disease, and the diagnosis may only be established following renal transplantation when the disease recurs or if new extra-renal symptoms develop. Case presentation We present two patients who presented with progressive chronic kidney disease of unknown cause. Both patients underwent successful renal transplantation but subsequently developed multisystem abnormalities, and were ultimately diagnosed with mitochondrial cytopathy 10–15 years following transplantation. Conclusions Mitochondrial cytopathies are rare inborn errors of metabolism that should be considered in adults with renal impairment, especially in those with a family history of kidney or other multisystem disease. The widespread availability of genetic testing provides the potential for earlier diagnoses, thereby enhancing management decisions, anticipation of complications, avoidance of mitotoxic drugs, and informed prognosis prediction.
Collapse
Affiliation(s)
- Tayeba Roper
- Department of Renal Medicine, Guy's & St Thomas' NHS Foundation Trust, Great Maze Pond, London, UK.
| | - Mark Harber
- UCL Department of Renal Medicine, Royal Free Hospital, Pond Street, Hampstead, London, UK
| | - Gareth Jones
- UCL Department of Renal Medicine, Royal Free Hospital, Pond Street, Hampstead, London, UK
| | - Robert D S Pitceathly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Alan D Salama
- UCL Department of Renal Medicine, Royal Free Hospital, Pond Street, Hampstead, London, UK
| |
Collapse
|
22
|
Palmieri F, Scarcia P, Monné M. Diseases Caused by Mutations in Mitochondrial Carrier Genes SLC25: A Review. Biomolecules 2020; 10:biom10040655. [PMID: 32340404 PMCID: PMC7226361 DOI: 10.3390/biom10040655] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/13/2022] Open
Abstract
In the 1980s, after the mitochondrial DNA (mtDNA) had been sequenced, several diseases resulting from mtDNA mutations emerged. Later, numerous disorders caused by mutations in the nuclear genes encoding mitochondrial proteins were found. A group of these diseases are due to defects of mitochondrial carriers, a family of proteins named solute carrier family 25 (SLC25), that transport a variety of solutes such as the reagents of ATP synthase (ATP, ADP, and phosphate), tricarboxylic acid cycle intermediates, cofactors, amino acids, and carnitine esters of fatty acids. The disease-causing mutations disclosed in mitochondrial carriers range from point mutations, which are often localized in the substrate translocation pore of the carrier, to large deletions and insertions. The biochemical consequences of deficient transport are the compartmentalized accumulation of the substrates and dysfunctional mitochondrial and cellular metabolism, which frequently develop into various forms of myopathy, encephalopathy, or neuropathy. Examples of diseases, due to mitochondrial carrier mutations are: combined D-2- and L-2-hydroxyglutaric aciduria, carnitine-acylcarnitine carrier deficiency, hyperornithinemia-hyperammonemia-homocitrillinuria (HHH) syndrome, early infantile epileptic encephalopathy type 3, Amish microcephaly, aspartate/glutamate isoform 1 deficiency, congenital sideroblastic anemia, Fontaine progeroid syndrome, and citrullinemia type II. Here, we review all the mitochondrial carrier-related diseases known until now, focusing on the connections between the molecular basis, altered metabolism, and phenotypes of these inherited disorders.
Collapse
Affiliation(s)
- Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy;
- Correspondence: (F.P.); (M.M.); Tel.: +39-0805443323 (F.P.)
| | - Pasquale Scarcia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy;
| | - Magnus Monné
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy;
- Department of Sciences, University of Basilicata, via Ateneo Lucano 10, 85100 Potenza, Italy
- Correspondence: (F.P.); (M.M.); Tel.: +39-0805443323 (F.P.)
| |
Collapse
|
23
|
Felhi R, Charif M, Sfaihi L, Mkaouar-Rebai E, Desquiret-Dumas V, Kallel R, Bris C, Goudenège D, Guichet A, Bonneau D, Procaccio V, Reynier P, Amati-Bonneau P, Hachicha M, Fakhfakh F, Lenaers G. Mutations in aARS genes revealed by targeted next-generation sequencing in patients with mitochondrial diseases. Mol Biol Rep 2020; 47:3779-3787. [PMID: 32319008 DOI: 10.1007/s11033-020-05425-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/03/2020] [Indexed: 11/29/2022]
Abstract
Mitochondrial diseases are a clinically heterogeneous group of multisystemic disorders that arise as a result of various mitochondrial dysfunctions. Autosomal recessive aARS deficiencies represent a rapidly growing group of severe rare inherited mitochondrial diseases, involving multiple organs, and currently without curative option. They might be related to defects of mitochondrial aminoacyl t-RNA synthetases (mtARS) that are ubiquitous enzymes involved in mitochondrial aminoacylation and the translation process. Here, using NGS analysis of 281 nuclear genes encoding mitochondrial proteins, we identified 4 variants in different mtARS in three patients from unrelated Tunisian families, with clinical features of mitochondrial disorders. Two homozygous variants were found in KARS (c.683C>T) and AARS2 (c.1150-4C>G), respectively in two patients, while two heterozygous variants in EARS2 (c.486-7C>G) and DARS2 (c.1456C>T) were concomitantly found in the third patient. Bio-informatics investigations predicted their pathogenicity and deleterious effects on pre-mRNA splicing and on protein stability. Thus, our results suggest that mtARS mutations are common in Tunisian patients with mitochondrial diseases.
Collapse
Affiliation(s)
- Rahma Felhi
- Molecular and Functional Genetics Laboratory, Faculty of Science of Sfax, University of Sfax, Route Soukra, Km 3, Sfax, Tunisia.
| | - Majida Charif
- MitoLab Team, Institut MitoVasc, UMR CNRS6015, INSERM U1083, Angers University, Angers, France.,Genetics and Immuno-Cell Therapy Team, Mohammed First University, Oujda, Morocco
| | - Lamia Sfaihi
- Departments of Pediatry, University Hospital Hedi Chaker, Sfax, Tunisia
| | - Emna Mkaouar-Rebai
- Molecular and Functional Genetics Laboratory, Faculty of Science of Sfax, University of Sfax, Route Soukra, Km 3, Sfax, Tunisia
| | - Valerie Desquiret-Dumas
- MitoLab Team, Institut MitoVasc, UMR CNRS6015, INSERM U1083, Angers University, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Rim Kallel
- Departments of Pathology, University Hospital Habib Bourguiba, Sfax, Tunisia
| | - Céline Bris
- MitoLab Team, Institut MitoVasc, UMR CNRS6015, INSERM U1083, Angers University, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - David Goudenège
- MitoLab Team, Institut MitoVasc, UMR CNRS6015, INSERM U1083, Angers University, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Agnès Guichet
- MitoLab Team, Institut MitoVasc, UMR CNRS6015, INSERM U1083, Angers University, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Dominique Bonneau
- MitoLab Team, Institut MitoVasc, UMR CNRS6015, INSERM U1083, Angers University, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Vincent Procaccio
- MitoLab Team, Institut MitoVasc, UMR CNRS6015, INSERM U1083, Angers University, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Pascal Reynier
- MitoLab Team, Institut MitoVasc, UMR CNRS6015, INSERM U1083, Angers University, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Patrizia Amati-Bonneau
- MitoLab Team, Institut MitoVasc, UMR CNRS6015, INSERM U1083, Angers University, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Mongia Hachicha
- Departments of Pediatry, University Hospital Hedi Chaker, Sfax, Tunisia
| | - Faiza Fakhfakh
- Molecular and Functional Genetics Laboratory, Faculty of Science of Sfax, University of Sfax, Route Soukra, Km 3, Sfax, Tunisia.
| | - Guy Lenaers
- MitoLab Team, Institut MitoVasc, UMR CNRS6015, INSERM U1083, Angers University, Angers, France
| |
Collapse
|
24
|
Sudhakar SV, Muthusamy K, Arunachal G, Shroff M. Genomics and Radiogenomics in Inherited Neurometabolic Disorders - A Practical Primer for Pediatricians. Indian J Pediatr 2019; 86:923-938. [PMID: 31197644 DOI: 10.1007/s12098-019-02860-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/09/2019] [Indexed: 12/20/2022]
Abstract
Advances in genetics has revolutionised the way we understand, diagnose and manage neurological disorders. Notwithstanding the fact that genetic confirmation has already become standard of care in routine clinical practice, radiological and clinical phenotyping has not diminished in value; in fact it has found an enhanced role in guiding and interpreting genetic test results. Inherited neurometabolic disorders are a prominent group of disorders which are seen commonly in clinical practice and many are potentially treatable. The concept of Radiogenomics is the bridge from phenotype to genotype and the strength of association varies widely across different inherited metabolic diseases. Understanding the strengths and limitations of these correlations forms the basis of success of multidisciplinary approach to diagnose these disorders. In this article authors give a brief overview of the genetic basis of a disease, available genetic tests and the prominent role of radiology in contemplating a diagnostic suspicion and guiding further confirmatory tests.
Collapse
Affiliation(s)
- Sniya Valsa Sudhakar
- Department of Radiodiagnosis, Christian Medical College and Hospital, Vellore, Tamil Nadu, 632004, India
| | - Karthik Muthusamy
- Department of Neurological Sciences, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - Gautham Arunachal
- Department of Human Genetics, NIMHANS (National Institute of Mental Health and Neurosciences), Bangalore, Karnataka, India
| | - Manohar Shroff
- Department of Diagnostic Imaging, Hospital for Sick Children / Medical Imaging, University of Toronto, Toronto, Canada.
| |
Collapse
|
25
|
Cardoso AL, Fernandes A, Aguilar-Pimentel JA, de Angelis MH, Guedes JR, Brito MA, Ortolano S, Pani G, Athanasopoulou S, Gonos ES, Schosserer M, Grillari J, Peterson P, Tuna BG, Dogan S, Meyer A, van Os R, Trendelenburg AU. Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases. Ageing Res Rev 2018; 47:214-277. [PMID: 30071357 DOI: 10.1016/j.arr.2018.07.004] [Citation(s) in RCA: 301] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Use of the frailty index to measure an accumulation of deficits has been proven a valuable method for identifying elderly people at risk for increased vulnerability, disease, injury, and mortality. However, complementary molecular frailty biomarkers or ideally biomarker panels have not yet been identified. We conducted a systematic search to identify biomarker candidates for a frailty biomarker panel. METHODS Gene expression databases were searched (http://genomics.senescence.info/genes including GenAge, AnAge, LongevityMap, CellAge, DrugAge, Digital Aging Atlas) to identify genes regulated in aging, longevity, and age-related diseases with a focus on secreted factors or molecules detectable in body fluids as potential frailty biomarkers. Factors broadly expressed, related to several "hallmark of aging" pathways as well as used or predicted as biomarkers in other disease settings, particularly age-related pathologies, were identified. This set of biomarkers was further expanded according to the expertise and experience of the authors. In the next step, biomarkers were assigned to six "hallmark of aging" pathways, namely (1) inflammation, (2) mitochondria and apoptosis, (3) calcium homeostasis, (4) fibrosis, (5) NMJ (neuromuscular junction) and neurons, (6) cytoskeleton and hormones, or (7) other principles and an extensive literature search was performed for each candidate to explore their potential and priority as frailty biomarkers. RESULTS A total of 44 markers were evaluated in the seven categories listed above, and 19 were awarded a high priority score, 22 identified as medium priority and three were low priority. In each category high and medium priority markers were identified. CONCLUSION Biomarker panels for frailty would be of high value and better than single markers. Based on our search we would propose a core panel of frailty biomarkers consisting of (1) CXCL10 (C-X-C motif chemokine ligand 10), IL-6 (interleukin 6), CX3CL1 (C-X3-C motif chemokine ligand 1), (2) GDF15 (growth differentiation factor 15), FNDC5 (fibronectin type III domain containing 5), vimentin (VIM), (3) regucalcin (RGN/SMP30), calreticulin, (4) PLAU (plasminogen activator, urokinase), AGT (angiotensinogen), (5) BDNF (brain derived neurotrophic factor), progranulin (PGRN), (6) α-klotho (KL), FGF23 (fibroblast growth factor 23), FGF21, leptin (LEP), (7) miRNA (micro Ribonucleic acid) panel (to be further defined), AHCY (adenosylhomocysteinase) and KRT18 (keratin 18). An expanded panel would also include (1) pentraxin (PTX3), sVCAM/ICAM (soluble vascular cell adhesion molecule 1/Intercellular adhesion molecule 1), defensin α, (2) APP (amyloid beta precursor protein), LDH (lactate dehydrogenase), (3) S100B (S100 calcium binding protein B), (4) TGFβ (transforming growth factor beta), PAI-1 (plasminogen activator inhibitor 1), TGM2 (transglutaminase 2), (5) sRAGE (soluble receptor for advanced glycosylation end products), HMGB1 (high mobility group box 1), C3/C1Q (complement factor 3/1Q), ST2 (Interleukin 1 receptor like 1), agrin (AGRN), (6) IGF-1 (insulin-like growth factor 1), resistin (RETN), adiponectin (ADIPOQ), ghrelin (GHRL), growth hormone (GH), (7) microparticle panel (to be further defined), GpnmB (glycoprotein nonmetastatic melanoma protein B) and lactoferrin (LTF). We believe that these predicted panels need to be experimentally explored in animal models and frail cohorts in order to ascertain their diagnostic, prognostic and therapeutic potential.
Collapse
|
26
|
|
27
|
Moos WH, Faller DV, Glavas IP, Harpp DN, Irwin MH, Kanara I, Pinkert CA, Powers WR, Steliou K, Vavvas DG, Kodukula K. A New Approach to Treating Neurodegenerative Otologic Disorders. Biores Open Access 2018; 7:107-115. [PMID: 30069423 PMCID: PMC6069589 DOI: 10.1089/biores.2018.0017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hearing loss, the most common neurological disorder and the fourth leading cause of years lived with disability, can have profound effects on quality of life. The impact of this "invisible disability," with significant consequences, economic and personal, is most substantial in low- and middle-income countries, where >80% of affected people live. Given the importance of hearing for communication, enjoyment, and safety, with up to 500 million affected globally at a cost of nearly $800 billion/year, research on new approaches toward prevention and treatment is attracting increased attention. The consequences of noise pollution are largely preventable, but irreversible hearing loss can result from aging, disease, or drug side effects. Once damage occurs, treatment relies on hearing aids and cochlear implants. Preventing, delaying, or reducing some degree of hearing loss may be possible by avoiding excessive noise and addressing major contributory factors such as cardiovascular risk. However, given the magnitude of the problem, these interventions alone are unlikely to be sufficient. Recent advances in understanding principal mechanisms that govern hearing function, together with new drug discovery paradigms designed to identify efficacious therapies, bode well for pharmaceutical intervention. This review surveys various causes of loss of auditory function and discusses potential neurological underpinnings, including mitochondrial dysfunction. Mitochondria mitigate cell protection, survival, and function and may succumb to cumulative degradation of energy production and performance; the end result is cell death. Energy-demanding neurons and vestibulocochlear hair cells are vulnerable to mitochondrial dysfunction, and hearing impairment and deafness are characteristic of neurodegenerative mitochondrial disease phenotypes. Beyond acting as cellular powerhouses, mitochondria regulate immune responses to infections, and studies of this phenomenon have aided in identifying nuclear factor kappa B and nuclear factor erythroid 2-related factor 2/antioxidant response element signaling as targets for discovery of otologic drugs, respectively, suppressing or upregulating these pathways. Treatment with free radical scavenging antioxidants is one therapeutic approach, with lipoic acid and corresponding carnitine esters exhibiting improved biodistribution and other features showing promise. These compounds are also histone deacetylase (HDAC) inhibitors, adding epigenetic modulation to the mechanistic milieu through which they act. These data suggest that new drugs targeting mitochondrial dysfunction and modulating epigenetic pathways via HDAC inhibition or other mechanisms hold great promise.
Collapse
Affiliation(s)
- Walter H. Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, California
- ShangPharma Innovation, Inc., South San Francisco, California
| | - Douglas V. Faller
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts
| | - Ioannis P. Glavas
- Department of Ophthalmology, New York University School of Medicine, New York, New York
| | - David N. Harpp
- Department of Chemistry, Office for Science & Society, McGill University, Montreal, Canada
| | - Michael H. Irwin
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | | | - Carl A. Pinkert
- Department of Biological Sciences, College of Arts and Sciences, The University of Alabama, Tuscaloosa, Alabama
| | - Whitney R. Powers
- Department of Health Sciences, Boston University, Boston, Massachusetts
- Department of Anatomy, Boston University School of Medicine, Boston, Massachusetts
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts
- PhenoMatriX, Inc., Natick, Massachusetts
| | - Demetrios G. Vavvas
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Krishna Kodukula
- ShangPharma Innovation, Inc., South San Francisco, California
- PhenoMatriX, Inc., Natick, Massachusetts
- Bridgewater College, Bridgewater, Virginia
| |
Collapse
|
28
|
Aravintha Siva M, Mahalakshmi R, Bhakta-Guha D, Guha G. Gene therapy for the mitochondrial genome: Purging mutations, pacifying ailments. Mitochondrion 2018; 46:195-208. [PMID: 29890303 DOI: 10.1016/j.mito.2018.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/24/2018] [Accepted: 06/07/2018] [Indexed: 12/21/2022]
Abstract
In the recent years, the reported cases of mitochondrial disorders have reached a colossal number. These disorders spawn a sundry of pathological conditions, which lead to pernicious symptoms and even fatality. Due to the unpredictable etiologies, mitochondrial diseases are putatively referred to as "mystondria" (mysterious diseases of mitochondria). Although present-day research has greatly improved our understanding of mitochondrial disorders, effective therapeutic interventions are still at the precursory stage. The conundrum becomes further complicated because these pathologies might occur due to either mitochondrial DNA (mtDNA) mutations or due to mutations in the nuclear DNA (nDNA), or both. While correcting nDNA mutations by using gene therapy (replacement of defective genes by delivering wild-type (WT) ones into the host cell, or silencing a dominant mutant allele that is pathogenic) has emerged as a promising strategy to address some mitochondrial diseases, the complications in correcting the defects of mtDNA in order to renovate mitochondrial functions have remained a steep challenge. In this review, we focus specifically on the selective gene therapy strategies that have demonstrated prospects in targeting the pathological mutations in the mitochondrial genome, thereby treating mitochondrial ailments.
Collapse
Affiliation(s)
- M Aravintha Siva
- Cellular Dyshomeostasis Laboratory (CDHL), School of Chemical and Bio Technology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India
| | - R Mahalakshmi
- Cellular Dyshomeostasis Laboratory (CDHL), School of Chemical and Bio Technology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India
| | - Dipita Bhakta-Guha
- Cellular Dyshomeostasis Laboratory (CDHL), School of Chemical and Bio Technology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India.
| | - Gunjan Guha
- Cellular Dyshomeostasis Laboratory (CDHL), School of Chemical and Bio Technology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India.
| |
Collapse
|