1
|
Kebschull JM, Casoni F, Consalez GG, Goldowitz D, Hawkes R, Ruigrok TJH, Schilling K, Wingate R, Wu J, Yeung J, Uusisaari MY. Cerebellum Lecture: the Cerebellar Nuclei-Core of the Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2024; 23:620-677. [PMID: 36781689 PMCID: PMC10951048 DOI: 10.1007/s12311-022-01506-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/10/2022] [Indexed: 02/15/2023]
Abstract
The cerebellum is a key player in many brain functions and a major topic of neuroscience research. However, the cerebellar nuclei (CN), the main output structures of the cerebellum, are often overlooked. This neglect is because research on the cerebellum typically focuses on the cortex and tends to treat the CN as relatively simple output nuclei conveying an inverted signal from the cerebellar cortex to the rest of the brain. In this review, by adopting a nucleocentric perspective we aim to rectify this impression. First, we describe CN anatomy and modularity and comprehensively integrate CN architecture with its highly organized but complex afferent and efferent connectivity. This is followed by a novel classification of the specific neuronal classes the CN comprise and speculate on the implications of CN structure and physiology for our understanding of adult cerebellar function. Based on this thorough review of the adult literature we provide a comprehensive overview of CN embryonic development and, by comparing cerebellar structures in various chordate clades, propose an interpretation of CN evolution. Despite their critical importance in cerebellar function, from a clinical perspective intriguingly few, if any, neurological disorders appear to primarily affect the CN. To highlight this curious anomaly, and encourage future nucleocentric interpretations, we build on our review to provide a brief overview of the various syndromes in which the CN are currently implicated. Finally, we summarize the specific perspectives that a nucleocentric view of the cerebellum brings, move major outstanding issues in CN biology to the limelight, and provide a roadmap to the key questions that need to be answered in order to create a comprehensive integrated model of CN structure, function, development, and evolution.
Collapse
Affiliation(s)
- Justus M Kebschull
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA.
| | - Filippo Casoni
- Division of Neuroscience, San Raffaele Scientific Institute, and San Raffaele University, Milan, Italy
| | - G Giacomo Consalez
- Division of Neuroscience, San Raffaele Scientific Institute, and San Raffaele University, Milan, Italy
| | - Daniel Goldowitz
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Richard Hawkes
- Department of Cell Biology & Anatomy and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Tom J H Ruigrok
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Karl Schilling
- Department of Anatomy, Anatomy & Cell Biology, Rheinische Friedrich-Wilhelms-Universität, 53115, Bonn, Federal Republic of Germany
| | - Richard Wingate
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Joshua Wu
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Joanna Yeung
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Marylka Yoe Uusisaari
- Neuronal Rhythms in Movement Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-Son, Kunigami-Gun, Okinawa, 904-0495, Japan.
| |
Collapse
|
2
|
Magielse N, Heuer K, Toro R, Schutter DJLG, Valk SL. A Comparative Perspective on the Cerebello-Cerebral System and Its Link to Cognition. CEREBELLUM (LONDON, ENGLAND) 2023; 22:1293-1307. [PMID: 36417091 PMCID: PMC10657313 DOI: 10.1007/s12311-022-01495-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/11/2022] [Indexed: 11/24/2022]
Abstract
The longstanding idea that the cerebral cortex is the main neural correlate of human cognition can be elaborated by comparative analyses along the vertebrate phylogenetic tree that support the view that the cerebello-cerebral system is suited to support non-motor functions more generally. In humans, diverse accounts have illustrated cerebellar involvement in cognitive functions. Although the neocortex, and its transmodal association cortices such as the prefrontal cortex, have become disproportionately large over primate evolution specifically, human neocortical volume does not appear to be exceptional relative to the variability within primates. Rather, several lines of evidence indicate that the exceptional volumetric increase of the lateral cerebellum in conjunction with its connectivity with the cerebral cortical system may be linked to non-motor functions and mental operation in primates. This idea is supported by diverging cerebello-cerebral adaptations that potentially coevolve with cognitive abilities across other vertebrates such as dolphins, parrots, and elephants. Modular adaptations upon the vertebrate cerebello-cerebral system may thus help better understand the neuroevolutionary trajectory of the primate brain and its relation to cognition in humans. Lateral cerebellar lobules crura I-II and their reciprocal connections to the cerebral cortical association areas appear to have substantially expanded in great apes, and humans. This, along with the notable increase in the ventral portions of the dentate nucleus and a shift to increased relative prefrontal-cerebellar connectivity, suggests that modular cerebellar adaptations support cognitive functions in humans. In sum, we show how comparative neuroscience provides new avenues to broaden our understanding of cerebellar and cerebello-cerebral functions in the context of cognition.
Collapse
Affiliation(s)
- Neville Magielse
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Center Jülich, Jülich, Germany
- Otto Hahn Cognitive Neurogenetics Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Systems Neuroscience, Heinrich Heine University, Düsseldorf, Germany
| | - Katja Heuer
- Institute Pasteur, Unité de Neuroanatomie Appliquée et Théorique, Université Paris Cité, Paris, France
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Roberto Toro
- Institute Pasteur, Unité de Neuroanatomie Appliquée et Théorique, Université Paris Cité, Paris, France
| | - Dennis J L G Schutter
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | - Sofie L Valk
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Center Jülich, Jülich, Germany.
- Otto Hahn Cognitive Neurogenetics Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- Institute of Systems Neuroscience, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
3
|
Magielse N, Toro R, Steigauf V, Abbaspour M, Eickhoff SB, Heuer K, Valk SL. Phylogenetic comparative analysis of the cerebello-cerebral system in 34 species highlights primate-general expansion of cerebellar crura I-II. Commun Biol 2023; 6:1188. [PMID: 37993596 PMCID: PMC10665558 DOI: 10.1038/s42003-023-05553-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023] Open
Abstract
The reciprocal connections between the cerebellum and the cerebrum have been suggested to simultaneously play a role in brain size increase and to support a broad array of brain functions in primates. The cerebello-cerebral system has undergone marked functionally relevant reorganization. In particular, the lateral cerebellar lobules crura I-II (the ansiform) have been suggested to be expanded in hominoids. Here, we manually segmented 63 cerebella (34 primate species; 9 infraorders) and 30 ansiforms (13 species; 8 infraorders) to understand how their volumes have evolved over the primate lineage. Together, our analyses support proportional cerebellar-cerebral scaling, whereas ansiforms have expanded faster than the cerebellum and cerebrum. We did not find different scaling between strepsirrhines and haplorhines, nor between apes and non-apes. In sum, our study shows primate-general structural reorganization of the ansiform, relative to the cerebello-cerebral system, which is relevant for specialized brain functions in an evolutionary context.
Collapse
Grants
- RT and KH are supported by the French Agence Nationale de la Recherche, projects NeuroWebLab (ANR-19-DATA-0025) and DMOBE (ANR-21-CE45-0016). KH received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No101033485 (Individual Fellowship). Last, this work was funded in part by Helmholtz Association’s Initiative and Networking Fund under the Helmholtz International Lab grant agreement InterLabs-0015, and the Canada First Research Excellence Fund (CFREF Competition 2, 2015–2016), awarded to the Healthy Brains, Healthy Lives initiative at McGill University, through the Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL), including NM, SBE, and SLV.
Collapse
Affiliation(s)
- Neville Magielse
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jülich, Wilhelm-Johnen-Straße, 52428, Jülich, Germany.
- Otto Hahn Cognitive Neurogenetics Group, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1A, 04103, Leipzig, Germany.
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany.
| | - Roberto Toro
- Institut Pasteur, Unité de Neuroanatomie Appliquée et Théorique, Université Paris Cité, 25 rue du Dr. Roux, 75724, Paris, France
| | - Vanessa Steigauf
- Department of Biology, Northern Michigan University, 1401 Presque Isle Ave, MI, 49855, Marquette, USA
| | - Mahta Abbaspour
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Luisenstraße 56, Haus 1, 10117, Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Bonhoefferweg 3, 10117, Berlin, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jülich, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Katja Heuer
- Institut Pasteur, Unité de Neuroanatomie Appliquée et Théorique, Université Paris Cité, 25 rue du Dr. Roux, 75724, Paris, France
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1A, 04103, Leipzig, Germany
| | - Sofie L Valk
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jülich, Wilhelm-Johnen-Straße, 52428, Jülich, Germany.
- Otto Hahn Cognitive Neurogenetics Group, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1A, 04103, Leipzig, Germany.
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany.
| |
Collapse
|
4
|
Bisconti M, Daniello R, Damarco P, Tartarelli G, Pavia M, Carnevale G. High Encephalization in a Fossil Rorqual Illuminates Baleen Whale Brain Evolution. BRAIN, BEHAVIOR AND EVOLUTION 2021; 96:78-90. [PMID: 34758463 DOI: 10.1159/000519852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/22/2021] [Indexed: 11/19/2022]
Abstract
Baleen whales are considered underencephalized mammals due to their reduced brain size with respect to their body size (encephalization quotient [EQ] << 1). Despite their low EQ, mysticetes exhibit complex behavioral patterns in terms of motor abilities, vocal repertoire, and cultural learning. Very scarce information is available about the morphological evolution of the brain in this group; this makes it difficult to investigate the historical changes in brain shape and size in order to relate the origin of the complex mysticete behavioral repertoire to the evolution of specific neural substrates. Here, the first description of the virtual endocast of a fossil balaenopterid species, Marzanoptera tersillae from the Italian Pliocene, reveals an EQ of around 3, which is exceptional for baleen whales. The endocast showed a morphologically different organization of the brain in this fossil whale as the cerebral hemispheres are anteroposteriorly shortened, the cerebellum lacks the posteromedial expansion of the cerebellar hemispheres, and the cerebellar vermis is unusually reduced. The comparative reductions of the cerebral and cerebellar hemispheres suggest that the motor behavior of M. tersillae probably was less sophisticated than that exhibited by the extant rorqual and humpback species. The presence of an EQ value in this fossil species that is around 10 times higher than that of extant mysticetes opens new questions about brain evolution and provides new, invaluable information about the evolutionary path of morphological and size change in the brain of baleen whales.
Collapse
Affiliation(s)
- Michelangelo Bisconti
- Dipartimento di Scienze della Terra, Università degli Studi di Torino, Torino, Italy.,Paleontology Department, Natural History Museum of San Diego, San Diego, California, USA
| | - Riccardo Daniello
- Dipartimento di Scienze della Terra, Università degli Studi di Torino, Torino, Italy
| | - Piero Damarco
- Museo Paleontologico Territoriale dell'Astigiano, Ente di Gestione del Parco Paleontologico Astigiano, Asti, Italy
| | | | - Marco Pavia
- Dipartimento di Scienze della Terra, Università degli Studi di Torino, Torino, Italy
| | - Giorgio Carnevale
- Dipartimento di Scienze della Terra, Università degli Studi di Torino, Torino, Italy
| |
Collapse
|
5
|
Guevara EE, Hopkins WD, Hof PR, Ely JJ, Bradley BJ, Sherwood CC. Comparative analysis reveals distinctive epigenetic features of the human cerebellum. PLoS Genet 2021; 17:e1009506. [PMID: 33956822 PMCID: PMC8101944 DOI: 10.1371/journal.pgen.1009506] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
Identifying the molecular underpinnings of the neural specializations that underlie human cognitive and behavioral traits has long been of considerable interest. Much research on human-specific changes in gene expression and epigenetic marks has focused on the prefrontal cortex, a brain structure distinguished by its role in executive functions. The cerebellum shows expansion in great apes and is gaining increasing attention for its role in motor skills and cognitive processing, including language. However, relatively few molecular studies of the cerebellum in a comparative evolutionary context have been conducted. Here, we identify human-specific methylation in the lateral cerebellum relative to the dorsolateral prefrontal cortex, in a comparative study with chimpanzees (Pan troglodytes) and rhesus macaques (Macaca mulatta). Specifically, we profiled genome-wide methylation levels in the three species for each of the two brain structures and identified human-specific differentially methylated genomic regions unique to each structure. We further identified which differentially methylated regions (DMRs) overlap likely regulatory elements and determined whether associated genes show corresponding species differences in gene expression. We found greater human-specific methylation in the cerebellum than the dorsolateral prefrontal cortex, with differentially methylated regions overlapping genes involved in several conditions or processes relevant to human neurobiology, including synaptic plasticity, lipid metabolism, neuroinflammation and neurodegeneration, and neurodevelopment, including developmental disorders. Moreover, our results show some overlap with those of previous studies focused on the neocortex, indicating that such results may be common to multiple brain structures. These findings further our understanding of the cerebellum in human brain evolution. Humans are distinguished from other species by several aspects of cognition. While much comparative evolutionary neuroscience has focused on the neocortex, increasing recognition of the cerebellum’s role in cognition and motor processing has inspired considerable new research. Comparative molecular studies, however, generally continue to focus on the neocortex. We sought to characterize potential genetic regulatory traits distinguishing the human cerebellum by undertaking genome-wide epigenetic profiling of the lateral cerebellum, and compared this to the prefrontal cortex of humans, chimpanzees, and rhesus macaque monkeys. We found that humans showed greater differential CpG methylation–an epigenetic modification of DNA that can reflect past or present gene expression–in the cerebellum than the prefrontal cortex, highlighting the importance of this structure in human brain evolution. Humans also specifically show methylation differences at genes involved in neurodevelopment, neuroinflammation, synaptic plasticity, and lipid metabolism. These differences are relevant for understanding processes specific to humans, such as extensive plasticity, as well as pronounced and prevalent neurodegenerative conditions associated with aging.
Collapse
Affiliation(s)
- Elaine E. Guevara
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, United States of America
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, United States of America
- * E-mail:
| | - William D. Hopkins
- Keeling Center for Comparative Medicine and Research, University of Texas MD Anderson Cancer Center, Bastrop, Texas, United States of America
| | - Patrick R. Hof
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- New York Consortium in Evolutionary Primatology, New York, New York, United States of America
| | - John J. Ely
- MAEBIOS, Alamogordo, New Mexico, United States of America
| | - Brenda J. Bradley
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, United States of America
| | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, United States of America
| |
Collapse
|
6
|
Habas C. Functional Connectivity of the Cognitive Cerebellum. Front Syst Neurosci 2021; 15:642225. [PMID: 33897382 PMCID: PMC8060696 DOI: 10.3389/fnsys.2021.642225] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/11/2021] [Indexed: 12/19/2022] Open
Abstract
Anatomical tracing, human clinical data, and stimulation functional imaging have firmly established the major role of the (neo-)cerebellum in cognition and emotion. Telencephalization characterized by the great expansion of associative cortices, especially the prefrontal one, has been associated with parallel expansion of the neocerebellar cortex, especially the lobule VII, and by an increased number of interconnections between these two cortical structures. These anatomical modifications underlie the implication of the neocerebellum in cognitive control of complex motor and non-motor tasks. In humans, resting state functional connectivity has been used to determine a thorough anatomo-functional parcellation of the neocerebellum. This technique has identified central networks involving the neocerebellum and subserving its cognitive function. Neocerebellum participates in all intrinsic connected networks such as central executive, default mode, salience, dorsal and ventral attentional, and language-dedicated networks. The central executive network constitutes the main circuit represented within the neocerebellar cortex. Cerebellar zones devoted to these intrinsic networks appear multiple, interdigitated, and spatially ordered in three gradients. Such complex neocerebellar organization enables the neocerebellum to monitor and synchronize the main networks involved in cognition and emotion, likely by computing internal models.
Collapse
Affiliation(s)
- Christophe Habas
- Service de NeuroImagerie, Centre Hospitalier National d'Ophtalmologie des 15-20, Paris, France
| |
Collapse
|
7
|
Gill JS, Sillitoe RV. Functional Outcomes of Cerebellar Malformations. Front Cell Neurosci 2019; 13:441. [PMID: 31636540 PMCID: PMC6787289 DOI: 10.3389/fncel.2019.00441] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/18/2019] [Indexed: 12/20/2022] Open
Abstract
The cerebellum is well-established as a primary center for controlling sensorimotor functions. However, recent experiments have demonstrated additional roles for the cerebellum in higher-order cognitive functions such as language, emotion, reward, social behavior, and working memory. Based on the diversity of behaviors that it can influence, it is therefore not surprising that cerebellar dysfunction is linked to motor diseases such as ataxia, dystonia, tremor, and Parkinson's disease as well to non-motor disorders including autism spectrum disorders (ASD), schizophrenia, depression, and anxiety. Regardless of the condition, there is a growing consensus that developmental disturbances of the cerebellum may be a central culprit in triggering a number of distinct pathophysiological processes. Here, we consider how cerebellar malformations and neuronal circuit wiring impact brain function and behavior during development. We use the cerebellum as a model to discuss the expanding view that local integrated brain circuits function within the context of distributed global networks to communicate the computations that drive complex behavior. We highlight growing concerns that neurological and neuropsychiatric diseases with severe behavioral outcomes originate from developmental insults to the cerebellum.
Collapse
Affiliation(s)
- Jason S. Gill
- Section of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX, United States
| | - Roy V. Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
8
|
Brain size expansion in primates and humans is explained by a selective modular expansion of the cortico-cerebellar system. Cortex 2019; 118:292-305. [DOI: 10.1016/j.cortex.2019.04.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 11/26/2018] [Accepted: 04/29/2019] [Indexed: 01/16/2023]
|
9
|
Jacobs HIL, Hopkins DA, Mayrhofer HC, Bruner E, van Leeuwen FW, Raaijmakers W, Schmahmann JD. The cerebellum in Alzheimer's disease: evaluating its role in cognitive decline. Brain 2019; 141:37-47. [PMID: 29053771 DOI: 10.1093/brain/awx194] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 06/12/2017] [Indexed: 12/12/2022] Open
Abstract
The cerebellum has long been regarded as essential only for the coordination of voluntary motor activity and motor learning. Anatomical, clinical and neuroimaging studies have led to a paradigm shift in the understanding of the cerebellar role in nervous system function, demonstrating that the cerebellum appears integral also to the modulation of cognition and emotion. The search to understand the cerebellar contribution to cognitive processing has increased interest in exploring the role of the cerebellum in neurodegenerative and neuropsychiatric disorders. Principal among these is Alzheimer's disease. Here we review an already sizeable existing literature on the neuropathological, structural and functional neuroimaging studies of the cerebellum in Alzheimer's disease. We consider these observations in the light of the cognitive deficits that characterize Alzheimer's disease and in so doing we introduce a new perspective on its pathophysiology and manifestations. We propose an integrative hypothesis that there is a cerebellar contribution to the cognitive and neuropsychiatric deficits in Alzheimer's disease. We draw on the dysmetria of thought theory to suggest that this cerebellar component manifests as deficits in modulation of the neurobehavioural deficits. We provide suggestions for future studies to investigate this hypothesis and, ultimately, to establish a comprehensive, causal clinicopathological disease model.
Collapse
Affiliation(s)
- Heidi I L Jacobs
- School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, PO BOX 616, 6200 MD, AQ220 Maastricht, The Netherlands.,Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, PO BOX 616, 6200 MD Maastricht, The Netherlands.,Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - David A Hopkins
- School for Mental Health and Neuroscience, Department of Neuroscience, Maastricht University, PO BOX 616, 6200 MD Maastricht, The Netherlands.,Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Helen C Mayrhofer
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, PO BOX 616, 6200 MD Maastricht, The Netherlands
| | - Emiliano Bruner
- Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| | - Fred W van Leeuwen
- School for Mental Health and Neuroscience, Department of Neuroscience, Maastricht University, PO BOX 616, 6200 MD Maastricht, The Netherlands
| | - Wijnand Raaijmakers
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, PO BOX 616, 6200 MD Maastricht, The Netherlands
| | - Jeremy D Schmahmann
- Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Parrots have evolved a primate-like telencephalic-midbrain-cerebellar circuit. Sci Rep 2018; 8:9960. [PMID: 29967361 PMCID: PMC6028647 DOI: 10.1038/s41598-018-28301-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 06/20/2018] [Indexed: 01/13/2023] Open
Abstract
It is widely accepted that parrots show remarkable cognitive abilities. In mammals, the evolution of complex cognitive abilities is associated with increases in the size of the telencephalon and cerebellum as well as the pontine nuclei, which connect these two regions. Parrots have relatively large telencephalons that rival those of primates, but whether there are also evolutionary changes in their telencephalon-cerebellar relay nuclei is unknown. Like mammals, birds have two brainstem pontine nuclei that project to the cerebellum and receive projections from the telencephalon. Unlike mammals, birds also have a pretectal nucleus that connects the telencephalon with the cerebellum: the medial spiriform nucleus (SpM). We found that SpM, but not the pontine nuclei, is greatly enlarged in parrots and its relative size significantly correlated with the relative size of the telencephalon across all birds. This suggests that the telencephalon-SpM-cerebellar pathway of birds may play an analogous role to cortico-ponto-cerebellar pathways of mammals in controlling fine motor skills and complex cognitive processes. We conclude that SpM is key to understanding the role of telencephalon-cerebellar pathways in the evolution of complex cognitive abilities in birds.
Collapse
|
11
|
Smaers JB, Turner AH, Gómez-Robles A, Sherwood CC. A cerebellar substrate for cognition evolved multiple times independently in mammals. eLife 2018; 7:e35696. [PMID: 29809137 PMCID: PMC6003771 DOI: 10.7554/elife.35696] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/21/2018] [Indexed: 12/21/2022] Open
Abstract
Given that complex behavior evolved multiple times independently in different lineages, a crucial question is whether these independent evolutionary events coincided with modifications to common neural systems. To test this question in mammals, we investigate the lateral cerebellum, a neurobiological system that is novel to mammals, and is associated with higher cognitive functions. We map the evolutionary diversification of the mammalian cerebellum and find that relative volumetric changes of the lateral cerebellar hemispheres (independent of cerebellar size) are correlated with measures of domain-general cognition in primates, and are characterized by a combination of parallel and convergent shifts towards similar levels of expansion in distantly related mammalian lineages. Results suggest that multiple independent evolutionary occurrences of increased behavioral complexity in mammals may at least partly be explained by selection on a common neural system, the cerebellum, which may have been subject to multiple independent neurodevelopmental remodeling events during mammalian evolution.
Collapse
Affiliation(s)
- Jeroen B Smaers
- Department of AnthropologyStony Brook UniversityNew YorkUnited States
- Center for the Advanced Study of Human PaleobiologyStony Brook UniversityNew YorkUnited States
| | - Alan H Turner
- Department of Anatomical SciencesStony Brook UniversityNew YorkUnited States
| | - Aida Gómez-Robles
- Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUnited Kingdom
- Department of AnthropologyThe George Washington UniversityWashingtonUnited States
| | - Chet C Sherwood
- Department of AnthropologyThe George Washington UniversityWashingtonUnited States
| |
Collapse
|
12
|
Kerney M, Smaers JB, Schoenemann PT, Dunn JC. The coevolution of play and the cortico-cerebellar system in primates. Primates 2017; 58:485-491. [PMID: 28620843 PMCID: PMC5622916 DOI: 10.1007/s10329-017-0615-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/22/2017] [Indexed: 01/03/2023]
Abstract
Primates are some of the most playful animals in the natural world, yet the reason for this remains unclear. One hypothesis posits that primates are so playful because playful activity functions to help develop the sophisticated cognitive and behavioural abilities that they are also renowned for. If this hypothesis were true, then play might be expected to have coevolved with the neural substrates underlying these abilities in primates. Here, we tested this prediction by conducting phylogenetic comparative analyses to determine whether play has coevolved with the cortico-cerebellar system, a neural system known to be involved in complex cognition and the production of complex behaviour. We used phylogenetic generalised least squares analyses to compare the relative volume of the largest constituent parts of the primate cortico-cerebellar system (prefrontal cortex, non-prefrontal heteromodal cortical association areas, and posterior cerebellar hemispheres) to the mean percentage of time budget spent in play by a sample of primate species. Using a second categorical data set on play, we also used phylogenetic analysis of covariance to test for significant differences in the volume of the components of the cortico-cerebellar system among primate species exhibiting one of three different levels of adult-adult social play. Our results suggest that, in general, a positive association exists between the amount of play exhibited and the relative size of the main components of the cortico-cerebellar system in our sample of primate species. Although the explanatory power of this study is limited by the correlational nature of its analyses and by the quantity and quality of the data currently available, this finding nevertheless lends support to the hypothesis that play functions to aid the development of cognitive and behavioural abilities in primates.
Collapse
Affiliation(s)
- Max Kerney
- Division of Biological Anthropology, University of Cambridge, Pembroke Street, Cambridge, CB2 3QG, UK.
| | - Jeroen B Smaers
- Department of Anthropology, Stony Brook University, Stony Brook, NY, USA
| | - P Thomas Schoenemann
- Department of Anthropology and Cognitive Science Program, Indiana University, Bloomington, IN, USA
- Stone Age Institute, Gosport, IN, USA
| | - Jacob C Dunn
- Division of Biological Anthropology, University of Cambridge, Pembroke Street, Cambridge, CB2 3QG, UK
- Animal and Environment Research Group, Anglia Ruskin University, Cambridge, UK
| |
Collapse
|
13
|
Lobular homology in cerebellar hemispheres of humans, non-human primates and rodents: a structural, axonal tracing and molecular expression analysis. Brain Struct Funct 2017; 222:2449-2472. [PMID: 28508291 DOI: 10.1007/s00429-017-1436-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 04/28/2017] [Indexed: 02/07/2023]
Abstract
Comparative neuroanatomy provides insights into the evolutionary functional adaptation of specific mammalian cerebellar lobules, in which the lobulation pattern and functional localization are conserved. However, accurate identification of homologous lobules among mammalian species is challenging. In this review, we discuss the inter-species homology of crus I and II lobules which occupy a large volume in the posterior cerebellar hemisphere, particularly in humans. Both crus I/II in humans are homologous to crus I/II in non-human primates, according to Paxinos and colleagues; however, this area has been defined as crus I alone in non-human primates, according to Larsell and Brodal. Our neuroanatomical analyses in humans, macaques, marmosets, rats, and mice demonstrate that both crus I/II in humans are homologous to crus I/II or crus I alone in non-human primates, depending on previous definitions, and to crus I alone in rodents. Here, we refer to the region homologous to human crus I/II lobules as "ansiform area (AA)" across animals. Our results show that the AA's olivocerebellar climbing fiber and Purkinje cell projections as well as aldolase C gene expression patterns are both distinct and conserved in marmosets and rodents. The relative size of the AA, as represented by the AA volume fraction in the whole cerebellum was 0.34 in human, 0.19 in macaque, and approximately 0.1 in marmoset and rodents. These results indicate that the AA reflects an evolutionarily conserved structure in the mammalian cerebellum, which is characterized by distinct connectivity from neighboring lobules and a massive expansion in skillful primates.
Collapse
|
14
|
Soligo C, Smaers JB. Contextualising primate origins--an ecomorphological framework. J Anat 2016; 228:608-29. [PMID: 26830706 PMCID: PMC4804135 DOI: 10.1111/joa.12441] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2015] [Indexed: 12/15/2022] Open
Abstract
Ecomorphology - the characterisation of the adaptive relationship between an organism's morphology and its ecological role - has long been central to theories of the origin and early evolution of the primate order. This is exemplified by two of the most influential theories of primate origins: Matt Cartmill's Visual Predation Hypothesis, and Bob Sussman's Angiosperm Co-Evolution Hypothesis. However, the study of primate origins is constrained by the absence of data directly documenting the events under investigation, and has to rely instead on a fragmentary fossil record and the methodological assumptions inherent in phylogenetic comparative analyses of extant species. These constraints introduce particular challenges for inferring the ecomorphology of primate origins, as morphology and environmental context must first be inferred before the relationship between the two can be considered. Fossils can be integrated in comparative analyses and observations of extant model species and laboratory experiments of form-function relationships are critical for the functional interpretation of the morphology of extinct species. Recent developments have led to important advancements, including phylogenetic comparative methods based on more realistic models of evolution, and improved methods for the inference of clade divergence times, as well as an improved fossil record. This contribution will review current perspectives on the origin and early evolution of primates, paying particular attention to their phylogenetic (including cladistic relationships and character evolution) and environmental (including chronology, geography, and physical environments) contextualisation, before attempting an up-to-date ecomorphological synthesis of primate origins.
Collapse
Affiliation(s)
| | - Jeroen B Smaers
- Department of Anthropology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|