1
|
Thacharodi A, Hassan S, Ahmed ZHT, Singh P, Maqbool M, Meenatchi R, Pugazhendhi A, Sharma A. The ruminant gut microbiome vs enteric methane emission: The essential microbes may help to mitigate the global methane crisis. ENVIRONMENTAL RESEARCH 2024; 261:119661. [PMID: 39043353 DOI: 10.1016/j.envres.2024.119661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/17/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024]
Abstract
Ruminants release enteric methane into the atmosphere, significantly increasing greenhouse gas emissions and degrading the environment. A common focus of traditional mitigation efforts is on dietary management and manipulation, which may have limits in sustainability and efficacy, exploring the potential of essential microorganisms as a novel way to reduce intestinal methane emissions in ruminants; a topic that has garnered increased attention in recent years. Fermentation and feed digestion are significantly aided by essential microbes found in the rumen, such as bacteria, fungi, and archaea. The practical implications of the findings reported in various studies conducted on rumen gut concerning methane emissions may pave the way to understanding the mechanisms of CH4 production in the rumen to enhance cattle feed efficiency and mitigate CH4 emissions from livestock. This review discussed using essential bacteria to reduce intestinal methane emissions in ruminants. It investigates how particular microbial strains or consortia can alter rumen fermentation pathways to lower methane output while preserving the health and productivity of animals. We also describe the role of probiotics and prebiotics in managing methane emissions using microbial feed additives. Further, recent studies involving microbial interventions have been discussed. The use of new methods involving functional metagenomics and meta-transcriptomics for exploring the rumen microbiome structure has been highlighted. This review also emphasizes the challenges faced in altering the gut microbiome and future directions in this area.
Collapse
Affiliation(s)
- Aswin Thacharodi
- Dr. Thacharodi's Laboratories, Department of Research and Development, Puducherry, 605005, India
| | - Saqib Hassan
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600119, India; Future Leaders Mentoring Fellow, American Society for Microbiology, Washington, 20036, USA
| | - Z H Tawfeeq Ahmed
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600119, India
| | - Prabhakar Singh
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600119, India
| | - Mohsin Maqbool
- Sidney Kimmel Cancer Center, Jefferson Health, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Ramu Meenatchi
- Department of Biotechnology, SRM Institute of Science and Technology, Chengalpattu, Tamil Nadu, 603203, India
| | - Arivalagan Pugazhendhi
- Tecnologico de Monterrey, Centre of Bioengineering, NatProLab, AgroInnovationLab, School of Engineering and Sciences, Queretaro, 76130, Mexico
| | - Ashutosh Sharma
- Tecnologico de Monterrey, Centre of Bioengineering, NatProLab, AgroInnovationLab, School of Engineering and Sciences, Queretaro, 76130, Mexico.
| |
Collapse
|
2
|
Duque-Buitrago LF, Solórzano-Lugo IE, González-Vázquez M, Jiménez-Martínez C, Hernández-Aguirre MA, Osorio-Díaz P, Calderón-Domínguez G, Loera-Castañeda V, Mora-Escobedo R. Health-Related Composition and Bioactivity of an Agave Sap/Prickly Pear Juice Beverage. Molecules 2024; 29:2742. [PMID: 38930808 PMCID: PMC11206587 DOI: 10.3390/molecules29122742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
In this study, a beverage made from a combination of Agave sap (AS) and prickly pear juice (PPJ) was analyzed for its nutrients and bioactive and potentially health-promoting compounds. The beverage was evaluated for its ability to act as an antioxidant, regulate glycemic properties, and undergo gut bacterial fermentation in vitro. The major mono- and oligosaccharides present in the beverage were galacturonic acid (217.74 ± 13.46 mg/100 mL), rhamnose (227.00 ± 1.58 mg/100 mL), and fructose (158.16 ± 8.86 mg/mL). The main phenolic compounds identified were protocatechuic acid (440.31 ± 3.06 mg/100 mL) and catechin (359.72 ± 7.56 mg/100 mL). It was observed that the beverage had a low glycemic index (<40) and could inhibit digestive carbohydrases. The combination of ingredients also helped to reduce gas production during AS fermentation from 56.77 cm3 to 15.67 cm3. The major SCFAs produced during fermentation were butyrate, acetate, and propionate, with valerate being produced only during the late fermentation of the AS. This beverage is rich in bioactive compounds, such as polyphenols and dietary fiber, which will bring health benefits when consumed.
Collapse
Affiliation(s)
- Luisa Fernanda Duque-Buitrago
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico; (L.F.D.-B.); (C.J.-M.); (G.C.-D.)
- Escuela de Ingeniería de Alimentos, Universidad del Valle, Cali 76001, Colombia
| | - Iraham Enrique Solórzano-Lugo
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico; (L.F.D.-B.); (C.J.-M.); (G.C.-D.)
| | - Marcela González-Vázquez
- Instituto de Farmacobiología, Universidad de la Cañada, Teotitlán de Flores Magón 68540, Mexico;
| | - Cristian Jiménez-Martínez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico; (L.F.D.-B.); (C.J.-M.); (G.C.-D.)
| | | | - Perla Osorio-Díaz
- Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Yautepec 62731, Mexico; (M.A.H.-A.); (P.O.-D.)
| | - Georgina Calderón-Domínguez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico; (L.F.D.-B.); (C.J.-M.); (G.C.-D.)
| | - Verónica Loera-Castañeda
- Centro Interdisciplinario de Investigación para el Desarrollo Regional Unidad Durango, Instituto Politécnico Nacional, Durango 34220, Mexico;
| | - Rosalva Mora-Escobedo
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico; (L.F.D.-B.); (C.J.-M.); (G.C.-D.)
| |
Collapse
|
3
|
Radosavljević M, Belović M, Cvetanović Kljakić A, Torbica A. Production, modification and degradation of fructans and fructooligosacharides by enzymes originated from plants. Int J Biol Macromol 2024; 269:131668. [PMID: 38649077 DOI: 10.1016/j.ijbiomac.2024.131668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Non-starch polysaccharides exhibit numerous beneficial health effects but compounds belonging to FODMAP (Fermentable Oligo- Di- and Monosaccharides and Polyols) has been recently connected to several gastrointestinal disorders. This review presents integrated literature data on the occurrence and types of fructans and fructooligosaccharids (classified as FODMAPs) as well as their degrading enzymes present in plants. Plants from the family Asteraceae and many monocotyledones, including families Poaceae and Liliaceae, are the most abundant sources of both fructans and fructan-degrading enzymes. So far, vast majority of publications concerning the application of these specific plants in production of bakery products is related to increase of dietary fibre content in these products. However, there is limited research on their effect on FODMAP content and fibre balance. The authors emphasize the possibility of application of enzyme rich plant extract in food production casting light on the new scientific approach to fibre modification.
Collapse
Affiliation(s)
- Miloš Radosavljević
- University of Novi Sad, Faculty of Technology, Bulevar cara Lazara 1, 21102 Novi Sad, Serbia.
| | - Miona Belović
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21102 Novi Sad, Serbia
| | | | - Aleksandra Torbica
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21102 Novi Sad, Serbia
| |
Collapse
|
4
|
Zhang YY, Zhuang D, Wang HY, Liu CY, Lv GP, Meng LJ. Preparation, characterization, and bioactivity evaluation of oligosaccharides from Atractylodes lancea (Thunb.) DC. Carbohydr Polym 2022; 277:118854. [PMID: 34893263 DOI: 10.1016/j.carbpol.2021.118854] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/24/2022]
Abstract
Sixteen oligosaccharide monomers with the degree of polymerization 3 to 18 (DP 3 to DP 18) and three active fractions (DP 3-9, DP 8-11, and DP 11-17) were separated from Atractylodes lancea (Thunb.) DC. by optimized fast protein liquid chromatography coupled with refractive index detector (FPLC-RID) and preparation hydrophilic interaction chromatography (Pre-HILIC). Gas chromatography-mass spectrometer (GC-MS), liquid chromatography tandem mass spectrometry (LC-MS/MS), nuclear magnetic resonance (NMR) spectroscopy, and methylation analysis showed that the oligosaccharide in A. lancea was 1-kestose [β-D-fructofuranosyl-(2 → 1)-β-D-fructofuranosyl-(2 → 1)-α-D-glucopyranoside] (inulin-type fructooligosaccharides, FOS). Particularly, DP 3-9 showed the best capacity in stimulating phagocytic, NO, and cytokines production on RAW264.7 cells than any other purified oligosaccharide monomers and active fractions. It could also activate T-cells in Peyer's patch cells and enhance the production of colony stimulation factors. Besides, FPLC-RID showed a good capacity for large-scale preparation of DP 3-9 with the recovery of more than 93%. The bioactivity of sixteen FOS monomers (DP 3 to DP 18) and three FOS fractions (DP 3-9, DP 8-11, and DP 11-17) investigated in this study are beneficial for the utilization of FOS as a functional ingredient in novel product development.
Collapse
Affiliation(s)
- Ying-Yue Zhang
- School of Life Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Dan Zhuang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Hui-Yang Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Chun-Yao Liu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Guang-Ping Lv
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China; National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China.
| | - Li-Juan Meng
- Department of Geriatric Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China.
| |
Collapse
|
5
|
Manno-oligosaccharide attenuates inflammation and intestinal epithelium injury in weaned pigs upon enterotoxigenic Escherichia coli K88 challenge. Br J Nutr 2021; 126:993-1002. [PMID: 33298213 DOI: 10.1017/s0007114520004948] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To explore the effect of manno-oligosaccharide (MOS) on intestinal health in weaned pigs upon enterotoxigenic Escherichia coli K88 (ETEC) challenge, thirty-two male weaned pigs were randomly assigned into four groups. Pigs fed with a basal diet or basal diet containing MOS (0·6 g/kg) were orally infused with ETEC or culture medium. Results showed that MOS significantly elevated the digestibility of crude protein and gross energy in both ETEC-challenged and non-challenged pigs (P < 0·05). MOS also elevated serum concentrations of IgA and IgM (P < 0·05), but decreased serum concentrations of TNF-α, IL-1β and IL-6 (P < 0·05) in ETEC-challenged pigs. Interestingly, MOS increased villus height and the ratio of villus height:crypt depth in duodenum and ileum (P < 0·05). MOS also increased duodenal sucrase and ileal lactase activity in ETEC-challenged pigs (P < 0·05). MOS decreased the abundance of E. coli, but increased the abundance of Lactobacillus, Bifidobacterium and Bacillus in caecum (P < 0·05). Importantly, MOS not only elevated the expression levels of zonula occludens-1 (ZO-1), claudin-1 and GLUT-2 in duodenum (P < 0·05) but also elevated the expression levels of ZO-1, GLUT-2 and L-type amino acid transporter-1 in ileum (P < 0·05) upon ETEC challenge. These results suggested that MOS can alleviate inflammation and intestinal injury in weaned pigs upon ETEC challenge, which was associated with suppressed secretion of inflammatory cytokines and elevated serum Ig, as well as improved intestinal epithelium functions and microbiota.
Collapse
|
6
|
Abbasi AR, Liu J, Wang Z, Zhao A, Ying H, Qu L, Alam MA, Xiong W, Xu J, Lv Y. Recent Advances in Producing Sugar Alcohols and Functional Sugars by Engineering Yarrowia lipolytica. Front Bioeng Biotechnol 2021; 9:648382. [PMID: 33777917 PMCID: PMC7992007 DOI: 10.3389/fbioe.2021.648382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/19/2021] [Indexed: 12/14/2022] Open
Abstract
The sugar alcohols and functional sugars have wide applications in food, pharmaceutical, and chemical industries. However, the smaller quantities of natural occurring sugar alcohols and functional sugars restricted their applications. The enzymatic and whole-cell catalyst production is emerging as the predominant alternatives. The properties of Yarrowia lipolytica make it a promising sugar alcohol and functional sugar producer. However, there are still some issues to be resolved. As there exist reviews about the chemical structures, physicochemical properties, biological functions, applications, and biosynthesis of sugar alcohols and/or functional sugars in Y. lipolytica, this mini review will not only update the recent advances in enzymatic and microbial production of sugar alcohols (erythritol, D-threitol, and xylitol) and functional sugars (isomaltulose, trehalose, fructo-oligosaccharides, and galacto-oligosaccharides) by using recombinant Y. lipolytica but also focus on the studies of gene discovery, pathway engineering, expanding substrate scope, bioprocess engineering, and novel breeding methods to resolve the aforementioned issues.
Collapse
Affiliation(s)
| | - Jinle Liu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhi Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, China
| | - Anqi Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Hanjie Ying
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, China
| | - Lingbo Qu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, China
| | - Md. Asraful Alam
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, China
| | - Wenlong Xiong
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, China
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, China
- Zhengzhou Tuoyang Industrial Co., Ltd., Zhengzhou, China
- Zhengzhou University Industrial Technology Research Institute Co., Ltd., Zhengzhou, China
| | - Yongkun Lv
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Costa GT, Vasconcelos QDJS, Abreu GC, Albuquerque AO, Vilar JL, Aragão GF. Systematic review of the ingestion of fructooligosaccharides on the absorption of minerals and trace elements versus control groups. Clin Nutr ESPEN 2020; 41:68-76. [PMID: 33487309 DOI: 10.1016/j.clnesp.2020.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/18/2020] [Accepted: 11/06/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND & AIMS Fructooligosaccharides (FOS) are non-caloric and unconventional sugars that are not metabolized by the human body, but can be fermented by the colonic microbiota, leading to some beneficial effects on the absorption of minerals and trace elements. There is, however, a lack of research that describes the continued consumption of FOS in the diet between healthy and ill individuals and their impact. The objective of this systematic review was to evaluate the evidence behind the role of FOS in the absorption of minerals and trace elements in the human body. METHODS The bibliographic research covered the period from January 2000 to August 2020. Four databases were investigated. We follow the Preferred Reporting Items for Systematic Reviews and Meta-Analyzes (PRISMA). The systematic review protocol was recorded in PROSPERO (139621). Two reviewers examined and extracted data from qualitative and quantitative studies published in the main databases, through a careful analysis. The risk of bias was assessed by four reviewers. RESULTS Of a total of 1494 texts, 30 complete articles composed this review. Two overarching categories represented the results: animal models and human models (randomized crossover design). Regarding human models, the results showed an improvement in minerals, especially the absorption of calcium, magnesium and iron after the ingestion of FOS, and specifically the absorption of minerals and trace elements in postmenopausal women was improved. CONCLUSIONS The use of FOS to improve the absorption of minerals and trace elements seems to be beneficial with evidence corroborating both in human and animal studies. However, the literature lacks articles exploring the daily dose and duration for FOS benefits, as well as long-term side effects in healthy or unhealthy subjects. Future research should focus on addressing the extent of the functional effect of this fiber and identifying the impact on overall health.
Collapse
Affiliation(s)
- G T Costa
- Surgery Department, Faculty of Medicine, Federal University of Ceará, Brazil
| | | | - G C Abreu
- Surgery Department, Faculty of Medicine, Federal University of Ceará, Brazil.
| | - A O Albuquerque
- Surgery Department, Faculty of Medicine, Federal University of Ceará, Brazil.
| | - J L Vilar
- Surgery Department, Faculty of Medicine, Federal University of Ceará, Brazil.
| | - G F Aragão
- Drug Research and Development Center, Federal University of Ceará, Brazil; Health Sciences Center, State University of Ceará, Brazil.
| |
Collapse
|
8
|
Gunter NV, Yap BJM, Chua CLL, Yap WH. Combining Understanding of Immunological Mechanisms and Genetic Variants Toward Development of Personalized Medicine for Psoriasis Patients. Front Genet 2019; 10:395. [PMID: 31130981 PMCID: PMC6509197 DOI: 10.3389/fgene.2019.00395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 04/11/2019] [Indexed: 12/12/2022] Open
Abstract
Psoriasis is multifactorial disease with complex genetic predisposition. Recent advances in genetics and genomics analyses have provided many insights into the relationship between specific genetic predisposition and the immunopathological mechanisms driving psoriasis manifestation. Novel approaches which utilize array-based genotyping technologies such as genome-wide association studies and bioinformatics tools for transcriptomics analysis have identified single nucleotide polymorphisms, genes and pathways that are associated with psoriasis. The discovery of these psoriasis-associated susceptibility loci, autoimmune targets and altered signaling pathways have provided opportunities to bridge the gap of knowledge from sequence to consequence, allowing new therapeutic strategies for the treatment of psoriasis to be developed. Here, we discuss recent advances in the field by highlighting how immune functions associated with psoriasis susceptibility loci may contribute to disease pathogenesis in different populations. Understanding the genetic variations in psoriasis and how these may influence the immunological pathways to cause disease will contribute to the efforts in developing novel and targeted personalized therapies for psoriasis patients.
Collapse
Affiliation(s)
| | - Bryan Ju Min Yap
- School of Biosciences, Taylor's University, Subang Jaya, Malaysia
| | | | - Wei Hsum Yap
- School of Biosciences, Taylor's University, Subang Jaya, Malaysia
| |
Collapse
|
9
|
Prebiotic Oligosaccharides: Special Focus on Fructooligosaccharides, Its Biosynthesis and Bioactivity. Appl Biochem Biotechnol 2017; 183:613-635. [PMID: 28948462 DOI: 10.1007/s12010-017-2605-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/13/2017] [Indexed: 12/12/2022]
Abstract
The bacterial groups in the gut ecosystem play key role in the maintenance of host's metabolic and structural functionality. The gut microbiota enhances digestion processing, helps in digestion of complex substances, synthesizes beneficial bioactive compounds, enhances bioavailability of minerals, impedes growth of pathogenic microbes, and prevents various diseases. It is, therefore, desirable to have an adequate intake of prebiotic biomolecules, which promote favorable modulation of intestinal microflora. Prebiotics are non-digestible and chemically stable structures that significantly enhance growth and functionality of gut microflora. The non-digestible carbohydrate, mainly oligosaccharides, covers a major part of total available prebiotics as dietary additives. The review describes the types of prebiotic low molecular weight carbohydrates, i.e., oligosaccharides, their structure, biosynthesis, functionality, and applications, with a special focus given to fructooligosaccharides (FOSs). The review provides an update on enzymes executing hydrolytic and fructosyltransferase activities producing prebiotic FOS biomolecules, and future perspectives.
Collapse
|