1
|
Gosset-Erard C, Han G, Kyrko D, Hueber A, Nay B, Eparvier V, Touboul D. Structural characterization of N-acyl-homoserine lactones from bacterial quorum sensing using LC-MS/MS analyses after Paternò-Büchi derivatization in solution. Anal Bioanal Chem 2024; 416:5431-5443. [PMID: 38842688 DOI: 10.1007/s00216-024-05355-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024]
Abstract
Bacterial quorum sensing is a chemical language allowing bacteria to interact through the excretion of molecules called autoinducers, like N-acyl-homoserine lactones (AHLs) produced by Gram-negative Burkholderia and Paraburkholderia bacteria known as opportunistic pathogens. The AHLs differ in their acyl-chain length and may be modified by a 3-oxo or 3-hydroxy substituent, or C = C double bonds at different positions. As the bacterial signal specificity depends on all of these chemical features, their structural characterization is essential to have a better understanding of the population regulation and virulence phenomenon. This study aimed at enabling the localization of the C = C double bond on such specialized metabolites while using significantly lower amounts of biological material. The approach is based on LC-MS/MS analyses of bacterial extracts after in-solution derivatization by a photochemical Paternò-Büchi reaction, leading to the formation of an oxetane ring and subsequently to specific fragmentations when performing MS/MS experiments. The in-solution derivatization of AHLs was optimized on several standards, and then the matrix effect of bacterial extracts on the derivatization was assessed. As a proof of concept, the optimized conditions were applied to a bacterial extract enabling the localization of C = C bonds on unsaturated AHLs.
Collapse
Affiliation(s)
- Clarisse Gosset-Erard
- Université Paris-Saclay, CNRS, Institut de Chimie Des Substances Naturelles, UPR 2301, 91198, Gif-Sur-Yvette, France
| | - Guanghui Han
- Laboratoire de Synthèse Organique (LSO), CNRS UMR 7652, Ecole Polytechnique, ENSTA, Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Dimitra Kyrko
- Université Paris-Saclay, CNRS, Institut de Chimie Des Substances Naturelles, UPR 2301, 91198, Gif-Sur-Yvette, France
| | - Amandine Hueber
- Université Paris-Saclay, CNRS, Institut de Chimie Des Substances Naturelles, UPR 2301, 91198, Gif-Sur-Yvette, France
| | - Bastien Nay
- Laboratoire de Synthèse Organique (LSO), CNRS UMR 7652, Ecole Polytechnique, ENSTA, Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Véronique Eparvier
- Université Paris-Saclay, CNRS, Institut de Chimie Des Substances Naturelles, UPR 2301, 91198, Gif-Sur-Yvette, France
| | - David Touboul
- Université Paris-Saclay, CNRS, Institut de Chimie Des Substances Naturelles, UPR 2301, 91198, Gif-Sur-Yvette, France.
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France.
| |
Collapse
|
2
|
Castillo-Juárez I, Blancas-Luciano BE, García-Contreras R, Fernández-Presas AM. Antimicrobial peptides properties beyond growth inhibition and bacterial killing. PeerJ 2022; 10:e12667. [PMID: 35116194 PMCID: PMC8785659 DOI: 10.7717/peerj.12667] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/01/2021] [Indexed: 01/07/2023] Open
Abstract
Antimicrobial peptides (AMPs) are versatile molecules with broad antimicrobial activity produced by representatives of the three domains of life. Also, there are derivatives of AMPs and artificial short peptides that can inhibit microbial growth. Beyond killing microbes, AMPs at grow sub-inhibitory concentrations also exhibit anti-virulence activity against critical pathogenic bacteria, including ESKAPE pathogens. Anti-virulence therapies are an alternative to antibiotics since they do not directly affect viability and growth, and they are considered less likely to generate resistance. Bacterial biofilms significantly increase antibiotic resistance and are linked to establishing chronic infections. Various AMPs can kill biofilm cells and eradicate infections in animal models. However, some can inhibit biofilm formation and promote dispersal at sub-growth inhibitory concentrations. These examples are discussed here, along with those of peptides that inhibit the expression of traits controlled by quorum sensing, such as the production of exoproteases, phenazines, surfactants, toxins, among others. In addition, specific targets that are determinants of virulence include secretion systems (type II, III, and VI) responsible for releasing effector proteins toxic to eukaryotic cells. This review summarizes the current knowledge on the anti-virulence properties of AMPs and the future directions of their research.
Collapse
Affiliation(s)
- Israel Castillo-Juárez
- Laboratorio de Fitoquímica, Posgrado de Botánica, Colegio de Postgraduados, Texcoco, Estado de México, Mexico
| | - Blanca Esther Blancas-Luciano
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico City, Mexico
| | - Rodolfo García-Contreras
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico City, Mexico
| | - Ana María Fernández-Presas
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico City, Mexico
| |
Collapse
|
3
|
Olanrewaju OS, Ayangbenro AS, Glick BR, Babalola OO. Plant health: feedback effect of root exudates-rhizobiome interactions. Appl Microbiol Biotechnol 2019; 103:1155-1166. [PMID: 30570692 PMCID: PMC6394481 DOI: 10.1007/s00253-018-9556-6] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/01/2018] [Accepted: 12/03/2018] [Indexed: 12/19/2022]
Abstract
The well-being of the microbial community that densely populates the rhizosphere is aided by a plant's root exudates. Maintaining a plant's health is a key factor in its continued existence. As minute as rhizospheric microbes are, their importance in plant growth cannot be overemphasized. They depend on plants for nutrients and other necessary requirements. The relationship between the rhizosphere-microbiome (rhizobiome) and plant hosts can be beneficial, non-effectual, or pathogenic depending on the microbes and the plant involved. This relationship, to a large extent, determines the fate of the host plant's survival. Modern molecular techniques have been used to unravel rhizobiome species' composition, but the interplay between the rhizobiome root exudates and other factors in the maintenance of a healthy plant have not as yet been thoroughly investigated. Many functional proteins are activated in plants upon contact with external factors. These proteins may elicit growth promoting or growth suppressing responses from the plants. To optimize the growth and productivity of host plants, rhizobiome microbial diversity and modulatory techniques need to be clearly understood for improved plant health.
Collapse
Affiliation(s)
- Oluwaseyi Samuel Olanrewaju
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, 2735, South Africa
| | - Ayansina Segun Ayangbenro
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, 2735, South Africa
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, 2735, South Africa.
| |
Collapse
|
4
|
Kai K. Bacterial quorum sensing in symbiotic and pathogenic relationships with hosts. Biosci Biotechnol Biochem 2018; 82:363-371. [PMID: 29424268 DOI: 10.1080/09168451.2018.1433992] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Gram-negative bacteria communicate with each other by producing and sensing diffusible signaling molecules. This mechanism is called quorum sensing (QS) and regulates many bacterial activities from gene expression to symbiotic/pathogenic interactions with hosts. Therefore, the elucidation and control of bacterial QS systems have been attracted increasing attention over the past two decades. The most common QS signals in Gram-negative bacteria are N-acyl homoserine lactones (AHLs). There are also bacteria that employ different QS systems, for example, the plant pathogen Ralstonia solanacearum utilizes 3-hydroxy fatty acid methyl esters as its QS signals. The QS system found in the endosymbiotic bacterium associated with the fungus Mortierella alpina, the development of an affinity pull-down method for AHL synthases, and the elucidation of a unique QS circuit in R. solanacearum are discussed herein.
Collapse
Affiliation(s)
- Kenji Kai
- a Graduate School of Life and Environmental Sciences , Osaka Prefecture University , Osaka , Japan
| |
Collapse
|
5
|
Mardanpour MM, Yaghmaei S. Dynamical Analysis of Microfluidic Microbial Electrolysis Cell via Integrated Experimental Investigation and Mathematical Modeling. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.01.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|