1
|
Aramendia J, García-Velasco N, Amigo JM, Izagirre U, Seifert A, Soto M, Castro K. Evidence of internalized microplastics in mussel tissues detected by volumetric Raman imaging. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169960. [PMID: 38211850 DOI: 10.1016/j.scitotenv.2024.169960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/05/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Microplastics are a global ecological concern due to their potential risk to wildlife and human health. Animals ingest microplastics, which can enter the trophic chain and ultimately impact human well-being. The ingestion of microplastics can cause physical and chemical damage to the animals' digestive systems, affecting their health. To estimate the risk to ecosystems and human health, it is crucial to understand the accumulation and localization of ingested microplastics within the cells and tissues of living organisms. However, analyzing this issue is challenging due to the risk of sample contamination, given the ubiquity of microplastics. Here, an analytical approach is employed to confirm the internalization of microplastics in cryogenic cross-sections of mussel tissue. Using 3D Raman confocal microscopy in combination with chemometrics, microplastics measuring 1 μm in size were detected. The results were further validated using optical and fluorescence microscopy. The findings revealed evidence of microplastics being internalized in the digestive epithelial tissues of exposed mussels (Mytilus galloprovincialis), specifically within the digestive cells forming digestive alveoli. This study highlights the need to investigate the internalization of microplastics in organisms like mussels, as it helps us understand the potential risks they pose to aquatic biota and ultimately to human health. By employing advanced imaging techniques, challenges associated with sample contamination can be overcome and valuable insights into the impact of microplastics on marine ecosystems and human consumers are provided.
Collapse
Affiliation(s)
- Julene Aramendia
- IBeA Research Group, Analytical Chemistry Department, Faculty of Science and Technology, University of the Basque Country UPV/EHU, E-48080 Bilbao, Basque Country, Spain.
| | - Nerea García-Velasco
- Cell Biology in Environmental Toxicology (CBET+) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080 Bilbao, Basque Country, Spain
| | - Jose Manuel Amigo
- IBeA Research Group, Analytical Chemistry Department, Faculty of Science and Technology, University of the Basque Country UPV/EHU, E-48080 Bilbao, Basque Country, Spain; IKERBASQUE, Basque Foundation for Science, Euskadi Plaza 5, 48009 Bilbao, Spain
| | - Urtzi Izagirre
- Cell Biology in Environmental Toxicology (CBET+) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080 Bilbao, Basque Country, Spain
| | - Andreas Seifert
- IKERBASQUE, Basque Foundation for Science, Euskadi Plaza 5, 48009 Bilbao, Spain; CIC nanoGUNE BRTA, Tolosa Hiribidea 76, 20018 San Sebastian, Spain
| | - Manu Soto
- Cell Biology in Environmental Toxicology (CBET+) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080 Bilbao, Basque Country, Spain
| | - Kepa Castro
- IBeA Research Group, Analytical Chemistry Department, Faculty of Science and Technology, University of the Basque Country UPV/EHU, E-48080 Bilbao, Basque Country, Spain
| |
Collapse
|
2
|
Devaux MF, Corcel M, Guillon F, Barron C. Maize Internode Autofluorescence at the Macroscopic Scale: Image Representation and Principal Component Analysis of a Series of Large Multispectral Images. Biomolecules 2023; 13:1104. [PMID: 37509140 PMCID: PMC10377703 DOI: 10.3390/biom13071104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023] Open
Abstract
A quantitative histology of maize stems is needed to study the role of tissue and of their chemical composition in plant development and in their end-use quality. In the present work, a new methodology is proposed to show and quantify the spatial variability of tissue composition in plant organs and to statistically compare different samples accounting for biological variability. Multispectral UV/visible autofluorescence imaging was used to acquire a macroscale image series based on the fluorescence of phenolic compounds in the cell wall. A series of 40 multispectral large images of a whole internode section taken from four maize inbred lines were compared. The series consisted of more than 1 billion pixels and 11 autofluorescence channels. Principal Component Analysis was adapted and named large PCA and score image montages at different scales were built. Large PCA score distributions were proposed as quantitative features to compare the inbred lines. Variations in the tissue fluorescence were clearly displayed in the score images. General intensity variations were identified. Rind vascular bundles were differentiated from other tissues due to their lignin fluorescence after visible excitation, while variations within the pith parenchyma were shown via UV fluorescence. They depended on the inbred line, as revealed by the first four large PCA score distributions. Autofluorescence macroscopy combined with an adapted analysis of a series of large images is promising for the investigation of the spatial heterogeneity of tissue composition between and within organ sections. The method is easy to implement and can be easily extended to other multi-hyperspectral imaging techniques. The score distributions enable a global comparison of the images and an analysis of the inbred lines' effect. The interpretation of the tissue autofluorescence needs to be further investigated by using complementary spatially resolved techniques.
Collapse
Affiliation(s)
| | | | | | - Cécile Barron
- UMR IATE, Univ Montpellier, INRAE, Institut Agro, 34060 Montpellier, France
| |
Collapse
|
3
|
Muñoz EC, Gosetti F, Ballabio D, Andò S, Gómez-Laserna O, Amigo JM, Garzanti E. Characterization of pyrite weathering products by Raman hyperspectral imaging and chemometrics techniques. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
4
|
Ilchenko O, Pilhun Y, Kutsyk A. Towards Raman imaging of centimeter scale tissue areas for real-time opto-molecular visualization of tissue boundaries for clinical applications. LIGHT, SCIENCE & APPLICATIONS 2022; 11:143. [PMID: 35585059 PMCID: PMC9117314 DOI: 10.1038/s41377-022-00828-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Raman spectroscopy combined with augmented reality and mixed reality to reconstruct molecular information of tissue surface.
Collapse
Affiliation(s)
- Oleksii Ilchenko
- Technical University of Denmark, Department of Health Technology, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Kgs, Lyngby, 2800, Denmark.
- Lightnovo ApS, Birkerød, 3460, Denmark.
| | - Yurii Pilhun
- Lightnovo ApS, Birkerød, 3460, Denmark
- Taras Shevchenko National University of Kyiv, Department of Quantum Radio Physics, Kyiv, Ukraine
| | - Andrii Kutsyk
- Lightnovo ApS, Birkerød, 3460, Denmark
- Taras Shevchenko National University of Kyiv, Department of Quantum Radio Physics, Kyiv, Ukraine
- Technical University of Denmark, Department of Energy Conversion and Storage, Kgs, Lyngby, 2800, Denmark
| |
Collapse
|
5
|
Coic L, Sacré PY, Dispas A, De Bleye C, Fillet M, Ruckebusch C, Hubert P, Ziemons É. Selection of essential spectra to improve the multivariate curve resolution of minor compounds in complex pharmaceutical formulations. Anal Chim Acta 2022; 1198:339532. [DOI: 10.1016/j.aca.2022.339532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 01/27/2023]
|
6
|
Linear unmixing protocol for hyperspectral image fusion analysis applied to a case study of vegetal tissues. Sci Rep 2021; 11:18665. [PMID: 34545129 PMCID: PMC8452694 DOI: 10.1038/s41598-021-98000-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/24/2021] [Indexed: 11/25/2022] Open
Abstract
Hyperspectral imaging (HSI) is a useful non-invasive technique that offers spatial and chemical information of samples. Often, different HSI techniques are used to obtain complementary information from the sample by combining different image modalities (Image Fusion). However, issues related to the different spatial resolution, sample orientation or area scanned among platforms need to be properly addressed. Unmixing methods are helpful to analyze and interpret the information of HSI related to each of the components contributing to the signal. Among those, Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) offers very suitable features for image fusion, since it can easily cope with multiset structures formed by blocks of images coming from different samples and platforms and allows the use of optional and diverse constraints to adapt to the specific features of each HSI employed. In this work, a case study based on the investigation of cross-sections from rice leaves by Raman, synchrotron infrared and fluorescence imaging techniques is presented. HSI of these three different techniques are fused for the first time in a single data structure and analyzed by MCR-ALS. This example is challenging in nature and is particularly suitable to describe clearly the necessary steps required to perform unmixing in an image fusion context. Although this protocol is presented and applied to a study of vegetal tissues, it can be generally used in many other samples and combinations of imaging platforms.
Collapse
|
7
|
Mei J, Zhao F, Xu R, Huang Y. A review on the application of spectroscopy to the condiments detection: from safety to authenticity. Crit Rev Food Sci Nutr 2021; 62:6374-6389. [PMID: 33739226 DOI: 10.1080/10408398.2021.1901257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Condiments are the magical ingredients that make the food present a richer taste. In recent years, due to the increasing consciousness of food safety and human health, much progress has been made in developing rapid and nondestructive techniques for the evaluation of food condiments safety, authentication, and traceability. The potential of spectroscopy techniques, such as near-infrared (NIR), mid-infrared (MIR), Raman, fluorescence, inductively coupled plasma (ICP), and hyperspectral imaging techniques, has been widely enhanced by numerous applications in this field because of their advantages over other analytical techniques. Following a brief introduction of condiment and safety basics, this review mainly focuses on recent vibrational and atomic spectral applications for condiment nondestructive analysis and evaluation, including (1) chemical hazards detection; (2) microbiological hazards detection; and (3) authenticity concerns. The review shows current spectroscopies to be effective tools that will play indispensable roles for food condiment evaluation. In addition, online/real-time applications of these techniques promise to be a huge growth field in the near future.
Collapse
Affiliation(s)
- Jianhua Mei
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P. R. China.,Health Food Industry Research Institute (Xinghua), China Agricultural University, Xinghua, Jiangsu, 225700, P. R. China
| | - Fangyuan Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266109, P. R. China
| | - Runqi Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P. R. China.,Health Food Industry Research Institute (Xinghua), China Agricultural University, Xinghua, Jiangsu, 225700, P. R. China
| | - Yue Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P. R. China.,Health Food Industry Research Institute (Xinghua), China Agricultural University, Xinghua, Jiangsu, 225700, P. R. China
| |
Collapse
|
8
|
Coic L, Sacré PY, Dispas A, De Bleye C, Fillet M, Ruckebusch C, Hubert P, Ziemons E. Pixel-based Raman hyperspectral identification of complex pharmaceutical formulations. Anal Chim Acta 2021; 1155:338361. [PMID: 33766319 DOI: 10.1016/j.aca.2021.338361] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022]
Abstract
Hyperspectral imaging has been widely used for different kinds of applications and many chemometric tools have been developed to help identifying chemical compounds. However, most of those tools rely on factorial decomposition techniques that can be challenging for large data sets and/or in the presence of minor compounds. The present study proposes a pixel-based identification (PBI) approach that allows readily identifying spectral signatures in Raman hyperspectral imaging data. This strategy is based on the identification of essential spectral pixels (ESP), which can be found by convex hull calculation. As the corresponding set of spectra is largely reduced and encompasses the purest spectral signatures, direct database matching and identification can be reliably and rapidly performed. The efficiency of PBI was evaluated on both known and unknown samples, considering genuine and falsified pharmaceutical tablets. We showed that it is possible to analyze a wide variety of pharmaceutical formulations of increasing complexity (from 5 to 0.1% (w/w) of polymorphic impurity detection) for medium (150 x 150 pixels) and big (1000 x 1000 pixels) map sizes in less than 2 min. Moreover, in the case of falsified medicines, it is demonstrated that the proposed approach allows the identification of all compounds, found in very different proportions and, sometimes, in trace amounts. Furthermore, the relevant spectral signatures for which no match is found in the reference database can be identified at a later stage and the nature of the corresponding compounds further investigated. Overall, the provided results show that Raman hyperspectral imaging combined with PBI enables rapid and reliable spectral identification of complex pharmaceutical formulations.
Collapse
Affiliation(s)
- Laureen Coic
- University of Liege (ULiege), CIRM, Vibra-Santé Hub, Laboratory of Pharmaceutical Analytical Chemistry, Avenue Hippocrate 15, 4000, Liege, Belgium.
| | - Pierre-Yves Sacré
- University of Liege (ULiege), CIRM, Vibra-Santé Hub, Laboratory of Pharmaceutical Analytical Chemistry, Avenue Hippocrate 15, 4000, Liege, Belgium
| | - Amandine Dispas
- University of Liege (ULiege), CIRM, Vibra-Santé Hub, Laboratory of Pharmaceutical Analytical Chemistry, Avenue Hippocrate 15, 4000, Liege, Belgium; University of Liege (ULiege), CIRM, MaS-Santé Hub, Laboratory for the Analysis of Medicines, Avenue Hippocrate 15, 4000, Liege, Belgium
| | - Charlotte De Bleye
- University of Liege (ULiege), CIRM, Vibra-Santé Hub, Laboratory of Pharmaceutical Analytical Chemistry, Avenue Hippocrate 15, 4000, Liege, Belgium
| | - Marianne Fillet
- University of Liege (ULiege), CIRM, MaS-Santé Hub, Laboratory for the Analysis of Medicines, Avenue Hippocrate 15, 4000, Liege, Belgium
| | - Cyril Ruckebusch
- University of Lille, CNRS, UMR 8516 LAboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement (LASIRE), F-59000, Lille, France
| | - Philippe Hubert
- University of Liege (ULiege), CIRM, Vibra-Santé Hub, Laboratory of Pharmaceutical Analytical Chemistry, Avenue Hippocrate 15, 4000, Liege, Belgium
| | - Eric Ziemons
- University of Liege (ULiege), CIRM, Vibra-Santé Hub, Laboratory of Pharmaceutical Analytical Chemistry, Avenue Hippocrate 15, 4000, Liege, Belgium
| |
Collapse
|
9
|
Detection of chocolate powder adulteration with peanut using near-infrared hyperspectral imaging and Multivariate Curve Resolution. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107454] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Rocha de Oliveira R, de Juan A. Design of Heterogeneity Indices for Blending Quality Assessment Based on Hyperspectral Images and Variographic Analysis. Anal Chem 2020; 92:15880-15889. [PMID: 33237728 DOI: 10.1021/acs.analchem.0c03241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Heterogeneity characterization is crucial to define the quality of end products and to describe the evolution of processes that involve blending of compounds. The heterogeneity concept describes both the diversity of physicochemical characteristics of sample fragments (constitutional heterogeneity) and the diversity of spatial distribution of the materials/compounds in the sample (distributional heterogeneity, DH). Hyperspectral images (HSIs) are unique analytical measurements that provide physicochemical and spatial information on samples and, hence, are ideal to perform heterogeneity studies. This work proposes a new methodology combining HSI and variographic analysis to obtain a good qualitative and quantitative description of global heterogeneity (GH) and DH for samples and blending processes. An initial step of image unmixing provides a set of pure distribution maps of the blending constituents as a function of time that allows a qualitative visualization of the heterogeneity variation along the blending process. These maps are used as seeding information for a subsequent variographic analysis that furnishes the newly designed quantitative global heterogeneity index (GHI) and distributional uniformity index (DUI), related to GH and DH indices, respectively. GHI and DUI indices can be described at a sample level and per component within the sample. GHI and DUI curves of blending processes are easily interpretable and adaptable for blending monitoring and control and provide invaluable information to understand the sources of the abnormal blending behavior.
Collapse
Affiliation(s)
- Rodrigo Rocha de Oliveira
- Chemometrics Group, Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645 08028, Barcelona, Spain
| | - Anna de Juan
- Chemometrics Group, Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645 08028, Barcelona, Spain
| |
Collapse
|