1
|
Ferdoush S, Gonzalez M. A two-stage mechanistic reduced-order model of pharmaceutical tablet dissolution: Population balance modeling and tablet wetting functions. Int J Pharm 2024; 664:124635. [PMID: 39187035 DOI: 10.1016/j.ijpharm.2024.124635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/24/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
We propose a two-stage reduced-order model (ROM) of pharmaceutical tablet dissolution that is comprised of (i) a mechanistic dissolution function of the active pharmaceutical ingredient (API) and (ii) a tablet wetting function. The former is derived from a population balance model, using a high-resolution finite volume algorithm for a given API crystal size distribution and dissolution rate coefficient. The latter is obtained from the mechanistic understanding of water penetration inside a porous tablet, and it estimates the rate at which the API is exposed to the buffer solution for a given formulation and the dimensions of the tablet, contact angle, and surface tension between the solid and liquid phases, liquid viscosity, and mean effective capillary radius of the pore solid structure. In turn, the two-stage model is mechanistic in nature and one-way coupled by means of convolution in time to capture the start time of the API dissolution process as water uptake, swelling, and disintegration take place. The two-stage model correlates dissolution profiles with critical process parameters (CPPs), critical material attributes (CMAs), and other crucial critical quality attributes (CQAs). We demonstrate the model's versatility and effectiveness in predicting the dissolution profiles of diverse pharmaceutical formulations. Specifically, we formulate and fabricate acetaminophen and lomustine solid tablets using different API content and size distributions, characterize their dissolution behavior, and estimate capillary radius as a function of tablet porosity. The estimations generated by the proposed models consistently match the experimental data across all cases investigated in this study.
Collapse
Affiliation(s)
- Shumaiya Ferdoush
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Marcial Gonzalez
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA; Ray W. Herrick Laboratories, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
2
|
Ganesh S, Su Q, Vo LBD, Pepka N, Rentz B, Vann L, Yazdanpanah N, O'Connor T, Nagy ZK, Reklaitis GV. Design of condition-based maintenance framework for process operations management in pharmaceutical continuous manufacturing. Int J Pharm 2020; 587:119621. [PMID: 32663581 PMCID: PMC9912015 DOI: 10.1016/j.ijpharm.2020.119621] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/17/2020] [Accepted: 07/04/2020] [Indexed: 11/25/2022]
Abstract
Continuous manufacturing, an emerging technology in the pharmaceutical industry, has the potential to increase the efficiency, and agility of pharmaceutical manufacturing processes. To realize these potential benefits of continuous operations, effectively managing materials, equipment, analyzers, and data is vital. Developments for continuous pharmaceutical manufacturing have led to novel technologies and methods for processing material, designing and configuring individual equipment and process analyzers, as well as implementing strategies for active process control. However, limited work has been reported on managing abnormal conditions during operations to prevent unplanned deviations and downtime and sustain system capabilities. Moreover, although the sourcing, analysis, and management of real-time data have received growing attention, limited discussion exists on the continued verification of the infrastructure for ensuring reliable operations. Hence, this work introduces condition-based maintenance (CBM) as a general strategy for continually verifying and sustaining advanced pharmaceutical manufacturing systems, with a focus on the continuous manufacture of oral solid drug products (OSD-CM). Frameworks, such as CBM, benefit unified efforts towards continued verification and operational excellence by leveraging process knowledge and the availability of real-time data. A vital implementation consideration for manufacturing operations management applications, such as CBM, is a systems architecture and an enabling infrastructure. This work outlines the systems architecture design for CBM in OSD-CM and highlights sample fault scenarios involving equipment and process analyzers. For illustrative purposes, this work also describes the infrastructure implemented on an OSD-CM testbed, which uses commercially available automation systems and leverages enterprise architecture standards. With the increasing digitalization of manufacturing operations in the pharmaceutical industry, proactively using process data towards modernizing maintenance practices is relevant to a single unit operation as well as to a series of physically integrated unit operations.
Collapse
Affiliation(s)
- Sudarshan Ganesh
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, IN, USA.
| | - Qinglin Su
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, IN, USA.
| | - Le Bao Dan Vo
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, IN, USA.
| | - Nolan Pepka
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, IN, USA.
| | - Benjamin Rentz
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, IN, USA.
| | - Lucas Vann
- Applied Global Services, Applied Materials, Inc., Santa Clara, CA, USA.
| | - Nima Yazdanpanah
- Office of Pharmaceutical Quality, Center for Drug Evaluation Research, Food and Drug Administration, Silver Spring, MD, USA.
| | - Thomas O'Connor
- Office of Pharmaceutical Quality, Center for Drug Evaluation Research, Food and Drug Administration, Silver Spring, MD, USA.
| | - Zoltan K Nagy
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, IN, USA.
| | - Gintaras V Reklaitis
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, IN, USA.
| |
Collapse
|
3
|
|
4
|
Su Q, Ganesh S, Moreno M, Bommireddy Y, Gonzalez M, Reklaitis GV, Nagy ZK. A perspective on Quality-by-Control (QbC) in pharmaceutical continuous manufacturing. Comput Chem Eng 2019; 125:216-231. [PMID: 36845965 PMCID: PMC9948678 DOI: 10.1016/j.compchemeng.2019.03.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The Quality-by-Design (QbD) guidance issued by the US Food and Drug Administration (FDA) has catalyzed the modernization of pharmaceutical manufacturing practices including the adoption of continuous manufacturing. Active process control was highlighted recently as a means to improve the QbD implementation. This advance has since been evolving into the concept of Quality-by-Control (QbC). In this study, the concept of QbC is discussed, including a definition of QbC, a review of the recent developments towards the QbC, and a perspective on the challenges of QbC implementation in continuous manufacturing. The QbC concept is demonstrated using a rotary tablet press, integrated into a pilot scale continuous direct compaction process. The results conclusively showed that active process control, based on product and process knowledge and advanced model-based techniques, including data reconciliation, model predictive control (MPC), and risk analysis, is indispensable to comprehensive QbC implementation, and ensures robustness and efficiency.
Collapse
Affiliation(s)
- Qinglin Su
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Sudarshan Ganesh
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Mariana Moreno
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Yasasvi Bommireddy
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Marcial Gonzalez
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.,Ray W. Herrick Laboratories, Purdue University, West Lafayette, IN 47907, USA
| | - Gintaras V Reklaitis
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Zoltan K Nagy
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
5
|
Su Q, Ganesh S, Le Vo DB, Nukala A, Bommireddy Y, Gonzalez M, Reklaitis GV, Nagy ZK. A Quality-by-Control Approach in Pharmaceutical Continuous Manufacturing of Oral Solid Dosage via Direct Compaction. ESCAPE. EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING 2019; 46:1327-1332. [PMID: 36790944 PMCID: PMC9923508 DOI: 10.1016/b978-0-12-818634-3.50222-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The pharmaceutical industry has been undergoing a paradigm shift towards continuous manufacturing, under which novel approaches to real-time product quality assurance have been investigated. A new perspective, entitled Quality-by-Control (QbC), has recently been proposed as an important extension and complementary approach to enable comprehensive Quality-by-Design (QbD) implementation. In this study, a QbC approach was demonstrated for a commercial scale tablet press in a continuous direct compaction process. First, the necessary understanding of the compressibility of a model formulation was obtained under QbD guidance using a pilot scale tablet press, Natoli BLP-16. Second, a data reconciliation strategy was used to reconcile the tablet weight measurement based on this understanding on a commercial scale tablet press, Natoli NP-400. Parameter estimation to monitor and update the material property variance was also considered. Third, a hierarchical three-level control strategy, which addressed the fast process dynamics of the commercial scale tablet press was designed. The strategy consisted of the Level 0 built-in machine control, Level 1 decoupled Proportional Integral Derivative (PID) control loops for tablet weight, pre-compression force, main compression force, and production rate control, and Level 2 data reconciliation of sensor measurements. The effective and reliable performance, which could be demonstrated on the rotary tablet press, confirmed that a QbC approach, based on product and process knowledge and advanced model-based techniques, can ensure robustness and efficiency in pharmaceutical continuous manufacturing.
Collapse
Affiliation(s)
- Qinglin Su
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Sudarshan Ganesh
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Dan Bao Le Vo
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Anushaa Nukala
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Yasasvi Bommireddy
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Marcial Gonzalez
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Gintaras V Reklaitis
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Zoltan K Nagy
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States
| |
Collapse
|