1
|
Leroux M, Lafleur A, Villalba-Guerrero C, Beaulieu M, Lira AB, Olivier M. Extracellular vesicles in parasitic protozoa: Impact of Leishmania exosomes containing Leishmania RNA virus 1 (LRV1) on Leishmania infectivity and disease progression. CURRENT TOPICS IN MEMBRANES 2024; 94:157-186. [PMID: 39370206 DOI: 10.1016/bs.ctm.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
This chapter focuses on the interplay between Leishmania parasites and their host, particularly on Leishmania RNA virus (LRVs) and extracellular vesicles (EVs) in modulating host-pathogen interactions. Leishmania EVs have been shown to facilitate gene transfer, including drug-resistance genes, enhancing the parasites' survival and resistance to antileishmanial therapeutics. These EVs also play a significant role in host immune modulation by altering cytokine production in macrophages and promoting an anti-inflammatory environment that favours parasitic persistence. The presence of virulence factors such as GP63 within these EVs further underscores their role in the parasite's immunopathogenesis. Over the last few decades, LRVs have been established as drivers of the severity and persistence of leishmaniasis by exacerbating inflammatory responses and potentially influencing treatment outcomes. This chapter discusses the evolutionary origins and classification of these viruses, and explores their role in parasitic pathogenicity, highlighting their ubiquity across protozoan parasites and their impact on disease progression.
Collapse
Affiliation(s)
- Marine Leroux
- The Research Institute of the McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - Andrea Lafleur
- The Research Institute of the McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - Carlos Villalba-Guerrero
- The Research Institute of the McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - Myriam Beaulieu
- The Research Institute of the McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - Andressa Brito Lira
- The Research Institute of the McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - Martin Olivier
- The Research Institute of the McGill University Health Centre, McGill University, Montréal, QC, Canada.
| |
Collapse
|
2
|
Heeren S, Maes I, Sanders M, Lye LF, Adaui V, Arevalo J, Llanos-Cuentas A, Garcia L, Lemey P, Beverley SM, Cotton JA, Dujardin JC, Van den Broeck F. Diversity and dissemination of viruses in pathogenic protozoa. Nat Commun 2023; 14:8343. [PMID: 38102141 PMCID: PMC10724245 DOI: 10.1038/s41467-023-44085-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
Viruses are the most abundant biological entities on Earth and play a significant role in the evolution of many organisms and ecosystems. In pathogenic protozoa, the presence of viruses has been linked to an increased risk of treatment failure and severe clinical outcome. Here, we studied the molecular epidemiology of the zoonotic disease cutaneous leishmaniasis in Peru and Bolivia through a joint evolutionary analysis of Leishmania braziliensis and their dsRNA Leishmania virus 1. We show that parasite populations circulate in tropical rainforests and are associated with single viral lineages that appear in low prevalence. In contrast, groups of hybrid parasites are geographically and ecologically more dispersed and associated with an increased prevalence, diversity and spread of viruses. Our results suggest that parasite gene flow and hybridization increased the frequency of parasite-virus symbioses, a process that may change the epidemiology of leishmaniasis in the region.
Collapse
Affiliation(s)
- Senne Heeren
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Ilse Maes
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | | | - Lon-Fye Lye
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Vanessa Adaui
- Laboratory of Biomolecules, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Jorge Arevalo
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Alejandro Llanos-Cuentas
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Lineth Garcia
- Instituto de Investigación Biomédicas e Investigación Social, Universidad Mayor de San Simon, Cochabamba, Bolivia
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Stephen M Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - James A Cotton
- Welcome Sanger Institute, Hinxton, UK
- School of Biodiversity, One Health and Comparative Medicine, Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jean-Claude Dujardin
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | - Frederik Van den Broeck
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium.
| |
Collapse
|
3
|
Heeren S, Maes I, Sanders M, Lye LF, Arevalo J, Llanos-Cuentas A, Garcia L, Lemey P, Beverley SM, Cotton JA, Dujardin JC, den Broeck FV. Parasite hybridization promotes spreading of endosymbiotic viruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.24.534103. [PMID: 36993291 PMCID: PMC10055345 DOI: 10.1101/2023.03.24.534103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Viruses are the most abundant biological entities on Earth and play a significant role in the evolution of many organisms and ecosystems. In pathogenic protozoa, the presence of endosymbiotic viruses has been linked to an increased risk of treatment failure and severe clinical outcome. Here, we studied the molecular epidemiology of the zoonotic disease cutaneous leishmaniasis in Peru and Bolivia through a joint evolutionary analysis of Leishmania braziliensis parasites and their endosymbiotic Leishmania RNA virus. We show that parasite populations circulate in isolated pockets of suitable habitat and are associated with single viral lineages that appear in low prevalence. In contrast, groups of hybrid parasites were geographically and ecologically dispersed, and commonly infected from a pool of genetically diverse viruses. Our results suggest that parasite hybridization, likely due to increased human migration and ecological perturbations, increased the frequency of endosymbiotic interactions known to play a key role in disease severity.
Collapse
Affiliation(s)
- Senne Heeren
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Ilse Maes
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Mandy Sanders
- Parasite Genomics Group, Welcome Sanger Institute, Hinxton, United Kingdom
| | - Lon-Fye Lye
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, United States
| | - Jorge Arevalo
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Alejandro Llanos-Cuentas
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Lineth Garcia
- Instituto de Investigación Biomédicas e Investigación Social, Universidad Mayor de San Simon, Cochabamba, Bolivia
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Stephen M Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, United States
| | - James A Cotton
- Parasite Genomics Group, Welcome Sanger Institute, Hinxton, United Kingdom
| | - Jean-Claude Dujardin
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Frederik Van den Broeck
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|