1
|
Morris CR, Hamilton-Reeves J, Martindale RG, Sarav M, Ochoa Gautier JB. Acquired Amino Acid Deficiencies: A Focus on Arginine and Glutamine. Nutr Clin Pract 2017; 32:30S-47S. [PMID: 28388380 DOI: 10.1177/0884533617691250] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Nonessential amino acids are synthesized de novo and therefore not diet dependent. In contrast, essential amino acids must be obtained through nutrition since they cannot be synthesized internally. Several nonessential amino acids may become essential under conditions of stress and catabolic states when the capacity of endogenous amino acid synthesis is exceeded. Arginine and glutamine are 2 such conditionally essential amino acids and are the focus of this review. Low arginine bioavailability plays a pivotal role in the pathogenesis of a growing number of varied diseases, including sickle cell disease, thalassemia, malaria, acute asthma, cystic fibrosis, pulmonary hypertension, cardiovascular disease, certain cancers, and trauma, among others. Catabolism of arginine by arginase enzymes is the most common cause of an acquired arginine deficiency syndrome, frequently contributing to endothelial dysfunction and/or T-cell dysfunction, depending on the clinical scenario and disease state. Glutamine, an arginine precursor, is one of the most abundant amino acids in the body and, like arginine, becomes deficient in several conditions of stress, including critical illness, trauma, infection, cancer, and gastrointestinal disorders. At-risk populations are discussed together with therapeutic options that target these specific acquired amino acid deficiencies.
Collapse
Affiliation(s)
- Claudia R Morris
- 1 Department of Pediatrics, Division of Pediatric Emergency Medicine, Emory-Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jill Hamilton-Reeves
- 2 Department of Dietetics and Nutrition, University of Kansas, Kansas City, Kansas, USA
| | - Robert G Martindale
- 3 Department of Surgery, Oregon Health and Science University, Portland, Oregon, USA
| | - Menaka Sarav
- 4 Department of Medicine, Division of Nephrology, Northshore University Health System, University of Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
2
|
Abstract
Arginine metabolism plays a major role in cardiovascular physiology and pathophysiology, largely via nitric oxide (NO)-dependent processes. It is becoming increasingly apparent, however, that arginine metabolic enzymes other than the NO synthases can also play important roles via both NO-dependent and -independent processes. There are three sources of arginine in vivo and at least five mammalian enzymes or enzyme families that utilize arginine as substrate. Changes in arginine availability or in production of the different end products of the various arginine metabolic pathways can have distinct and profound physiologic consequences. However, our knowledge regarding the complex interplay between these pathways at the level of the whole body, specific tissues, and even individual cells, is incomplete. This review will highlight recent findings in this area that may suggest additional avenues of investigation that will allow a fuller understanding of cardiovascular physiology in health and disease.
Collapse
Affiliation(s)
- Sidney M Morris
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, USA,
| |
Collapse
|
3
|
Morris SM. Recent advances in arginine metabolism: roles and regulation of the arginases. Br J Pharmacol 2009; 157:922-30. [PMID: 19508396 DOI: 10.1111/j.1476-5381.2009.00278.x] [Citation(s) in RCA: 344] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
As arginine can serve as precursor to a wide range of compounds, including nitric oxide, creatine, urea, polyamines, proline, glutamate and agmatine, there is considerable interest in elucidating mechanisms underlying regulation of its metabolism. It is now becoming apparent that the two isoforms of arginase in mammals play key roles in regulation of most aspects of arginine metabolism in health and disease. In particular, work over the past several years has focused on the roles and regulation of the arginases in vascular disease, pulmonary disease, infectious disease, immune cell function and cancer. As most of these topics have been considered in recent review articles, this review will focus more closely on results of recent studies on expression of the arginases in endothelial and vascular smooth muscle cells, post-translational modulation of arginase activity and applications of arginase inhibitors in vivo.
Collapse
Affiliation(s)
- Sidney M Morris
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
4
|
Shishova EY, Di Costanzo L, Emig FA, Ash DE, Christianson DW. Probing the specificity determinants of amino acid recognition by arginase. Biochemistry 2009; 48:121-31. [PMID: 19093830 DOI: 10.1021/bi801911v] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Arginase is a binuclear manganese metalloenzyme that serves as a therapeutic target for the treatment of asthma, erectile dysfunction, and atherosclerosis. In order to better understand the molecular basis of inhibitor affinity, we have employed site-directed mutagenesis, enzyme kinetics, and X-ray crystallography to probe the molecular recognition of the amino acid moiety (i.e., the alpha-amino and alpha-carboxylate groups) of substrate l-arginine and inhibitors in the active site of arginase I. Specifically, we focus on (1) a water-mediated hydrogen bond between the substrate alpha-carboxylate and T135, (2) a direct hydrogen bond between the substrate alpha-carboxylate and N130, and (3) a direct charged hydrogen bond between the substrate alpha-amino group and D183. Amino acid substitutions for T135, N130, and D183 generally compromise substrate affinity as reflected by increased K(M) values but have less pronounced effects on catalytic function as reflected by minimal variations of k(cat). As with substrate K(M) values, inhibitor K(d) values increase for binding to enzyme mutants and suggest that the relative contribution of intermolecular interactions to amino acid affinity in the arginase active site is water-mediated hydrogen bond < direct hydrogen bond < direct charged hydrogen bond. Structural comparisons of arginase with the related binuclear manganese metalloenzymes agmatinase and proclavaminic acid amidinohydrolase suggest that the evolution of substrate recognition in the arginase fold occurs by mutation of residues contained in specificity loops flanking the mouth of the active site (especially loops 4 and 5), thereby allowing diverse guanidinium substrates to be accommodated for catalysis.
Collapse
Affiliation(s)
- Ekaterina Y Shishova
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | | | | | | | | |
Collapse
|
5
|
Poljakovic M, Porter DW, Millecchia L, Kepka-Lenhart D, Beighley C, Wolfarth MG, Castranova V, Morris SM. Cell- and isoform-specific increases in arginase expression in acute silica-induced pulmonary inflammation. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2007; 70:118-27. [PMID: 17365572 PMCID: PMC2773696 DOI: 10.1080/15287390600755075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Arginase induction was reported in several inflammatory lung diseases, suggesting that this may be a common feature underlying the pathophysiology of such diseases. As little is known regarding arginase expression in silicosis, the induction and cellular localization of arginase were elucidated in lungs of Sprague-Dawley rats 24 h following exposure to varying doses of silica by intratracheal instillation. Arginase expression was evaluated by activity assay, quantification of arginase I and arginase II mRNA levels using real-time polymerase chain reaction (PCR), and immunohistochemistry. Analyses of cells and fluid obtained by bronchoalveolar lavage (BAL) showed that markers of pulmonary inflammation, tissue damage, activation of alveolar macrophages (AM) and NO production were significantly increased by all silica doses. Arginase activity was increased also in AMs isolated from BAL fluid of silica-treated rats. Silica produced two- and three-fold increases in arginase activity of whole lung at doses of 1 and 5 mg/100 g body weight, respectively. Levels of arginase I mRNA, but not of arginase II mRNA, were similarly elevated. In control lungs, arginase I immunoreactivity was observed only in AMs sparsely dispersed throughout the lung; no inducible nitric oxide synthase (iNOS) immunoreactivity was detected. In silica-treated lungs, arginase I and iNOS were co-expressed in most AMs that were abundantly clustered at inflammatory foci. The rapid induction of arginase I expression in inflammatory lung cells, similar to induction of arginase in other inflammatory lung diseases, implicates elevated arginase activity as a factor in the development of lung damage following exposure to silica.
Collapse
Affiliation(s)
- Mirjana Poljakovic
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Dale W. Porter
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505
| | - Lyndell Millecchia
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505
| | - Diane Kepka-Lenhart
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Christopher Beighley
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505
| | - Michael G. Wolfarth
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505
| | - Vincent Castranova
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505
| | - Sidney M. Morris
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Corresponding author: Sidney M. Morris, Jr., PhD, Department of Molecular Genetics and Biochemistry, W1255 Biomedical Science Tower, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, Tel: 412-648-9338; Fax: 412-624-1401,
| |
Collapse
|
6
|
Abstract
In mammals, L-arginine is classified as a semiessential or conditionally essential amino acid, depending on the developmental stage and health status of the individual. It can be derived from proline or glutamate, with the ultimate synthetic step catalyzed by argininosuccinate lyase. L-arginine is catabolized by arginases, nitric oxide synthases, arginine:glycine amidinotransferase, and possibly also by arginine decarboxylase, resulting ultimately in the production of urea, proline, glutamate, polyamines, nitric oxide, creatine, or agmatine. There is considerable diversity in tissue-specific and stimulus-dependent regulation of expression within this group of enzymes, and the expression of several of them can be regulated at transcriptional and translational levels by changes in the concentration of L-arginine itself. Consequently, the interplay among these enzymes in the regulation of specific aspects of arginine metabolism can be quite complex. For example, nitric oxide production can be affected by the interplay between nitric oxide synthases, arginases, and argininosuccinate synthetase. This metabolic complexity can pose challenges for analyses of arginine metabolism not only because L-arginine is a substrate for several different enzymes but also because ornithine and citrulline, key products of arginine metabolism, can each be produced by multiple enzymes. This overview highlights key features of the arginine metabolic enzymes and their interactions.
Collapse
Affiliation(s)
- Sidney M Morris
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
7
|
Abstract
The urea cycle is comprised of five enzymes but also requires other enzymes and mitochondrial amino acid transporters to function fully. The complete urea cycle is expressed in liver and to a small degree also in enterocytes. However, highly regulated expression of several enzymes present in the urea cycle occurs also in many other tissues, where these enzymes are involved in synthesis of nitric oxide, polyamines, proline and glutamate. Glucagon, insulin, and glucocorticoids are major regulators of the expression of urea cycle enzymes in liver. In contrast, the "urea cycle" enzymes in nonhepatic cells are regulated by a wide range of pro- and antiinflammatory cytokines and other agents. Regulation of these enzymes is largely transcriptional in virtually all cell types. This review emphasizes recent information regarding roles and regulation of urea cycle and arginine metabolic enzymes in liver and other cell types.
Collapse
Affiliation(s)
- Sidney M Morris
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.
| |
Collapse
|
8
|
Huang J, DeGraves FJ, Lenz SD, Gao D, Feng P, Li D, Schlapp T, Kaltenboeck B. The quantity of nitric oxide released by macrophages regulates Chlamydia-induced disease. Proc Natl Acad Sci U S A 2002; 99:3914-9. [PMID: 11904441 PMCID: PMC122623 DOI: 10.1073/pnas.062578399] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2001] [Indexed: 11/18/2022] Open
Abstract
Intracellular bacteria of the genus Chlamydia cause numerous typically chronic diseases, frequently with debilitating sequelae. Genetic determinants of disease susceptibility after infection with Chlamydia bacteria are unknown. C57BL/6 mice develop severe pneumonia and poor immunity against Chlamydia after moderate respiratory infection whereas BALB/c mice are protected from disease and develop vigorous Th1 immunity. Here we show that infected C57BL/6 macrophages release more NO synthesized by NO synthase 2 (NOS2) than BALB/c macrophages and have lower mRNA concentrations of arginase II, a competitor of NOS2 for the common substrate, l-arginine. Reduction, but not elimination, of NO production by incomplete inhibition of NOS2 abolishes susceptibility of C57BL/6 mice to Chlamydia-induced disease. Thus, the quantity of NO released by infected macrophages is the effector mechanism that regulates between pathogenic and protective responses to chlamydial infection, and genes controlling NO production determine susceptibility to chlamydial disease.
Collapse
Affiliation(s)
- Jin Huang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | | | | | | | | | | | | | | |
Collapse
|