1
|
Abstract
OBJECTIVES Children born very preterm (VP) are susceptible to a range of cognitive impairments, yet the effects of VP birth on long-term, episodic, and prospective memory remains unclear. This study examined episodic and prospective memory functioning in children born VP compared with their term-born counterparts at 13 years. METHOD VP (n = 81: born <30 weeks' gestation) and term (n = 26) groups were aged between 12 and 14 years. Children completed: (i) standardized verbal and visuospatial episodic memory tests; and (ii) an experimental time- and event-based prospective memory test that included short-term (within assessment session) and long-term (up to 1-week post-session) tasks. Parents completed a questionnaire assessing memory functions in everyday life. RESULTS The VP group performed worse on all measures of verbal and visuospatial episodic memory than the term group. While there were no group differences in event-based or long-term prospective memory, the VP group performed worse on time-based and short-term prospective memory tasks than term-born counterparts. Parents of children born VP reported more everyday memory difficulties than parents of children born at term, with parent-ratings indicating significantly elevated rates of everyday memory challenges in children born VP. CONCLUSIONS Children born VP warrant long-term surveillance, as challenges associated with VP birth include memory difficulties at 13 years. This study highlights the need for greater research and clinical attention into childhood functional memory outcomes.
Collapse
|
2
|
Ayoub LJ, Zhu J, Lee SJ, Mugisha N, Patel K, Duerden EG, Stinson J, Verriotis M, Noel M, Kong D, Moayedi M, McAndrews MP. Age-related effects on the anterior and posterior hippocampal volumes in 6-21 year olds: A model selection approach. Hippocampus 2023; 33:37-46. [PMID: 36519826 DOI: 10.1002/hipo.23487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
Although recent studies support significant differences in intrinsic structure, function, and connectivity along the longitudinal axis of the hippocampus, few studies have investigated the normative development of this dimension. In addition, factors known to influence hippocampal structure, such as sex or puberty, have yet to be characterized when assessing age-related effects on its subregions. This study addresses this gap by investigating the relationship of the anterior (antHC) and posterior (postHC) hippocampus volumes with age, and how these are moderated by sex or puberty, in structural magnetic resonance imaging scans from 183 typically developing participants aged 6-21 years. Based on previous literature, we first anticipated that non-linear models would best represent the relationship between age and the antHC and postHC volumes. We found that age-related effects are region-specific, such that the antHC volume remains stable with increasing age, while the postHC shows a cubic function characterized by overall volume increase with age but a slower rate during adolescence. Second, we hypothesized that models, which include biological sex or pubertal status would best describe these relationships. Contrary to expectation, models comprising either biological sex or pubertal status did not significantly improve model performance. Further longitudinal research is needed to evaluate their effects on the antHC and postHC development.
Collapse
Affiliation(s)
- Lizbeth J Ayoub
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.,University of Toronto Centre for the Study of Pain, Toronto, Ontario, Canada.,Division of Clinical and Computational Neuroscience, Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Junhao Zhu
- Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Steven J Lee
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Nancy Mugisha
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Kyle Patel
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Emma G Duerden
- Applied Psychology, Faculty of Education, Western University, London, Ontario, Canada
| | - Jennifer Stinson
- Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Madeleine Verriotis
- Pain Research, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Anaesthesia and Pain Management, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Melanie Noel
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Dehan Kong
- Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Massieh Moayedi
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.,University of Toronto Centre for the Study of Pain, Toronto, Ontario, Canada.,Division of Clinical and Computational Neuroscience, Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.,Department of Dentistry, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Mary Pat McAndrews
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Meng L, Zhang Y, Lin H, Mu J, Liao H, Wang R, Jiao S, Ma Z, Miao Z, Jiang W, Wang X. Abnormal hubs in global network as potential neuroimaging marker in generalized anxiety disorder at rest. Front Psychol 2022; 13:1075636. [PMID: 36591087 PMCID: PMC9801974 DOI: 10.3389/fpsyg.2022.1075636] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Background Mounting studies have reported altered neuroimaging features in generalized anxiety disorder (GAD). However, little is known about changes in degree centrality (DC) as an effective diagnostic method for GAD. Therefore, we aimed to explore the abnormality of DCs and whether these features can be used in the diagnosis of GAD. Methods Forty-one GAD patients and 45 healthy controls participated in the study. Imaging data were analyzed using DC and receiver operating characteristic (ROC) methods. Results Compared with the control group, increased DC values in bilateral cerebellum and left middle temporal gyrus (MTG), and decreased DC values in the left medial frontal orbital gyrus (MFOG), fusiform gyrus (FG), and bilateral posterior cingulate cortex (PCC). The ROC results showed that the DC value of the left MTG could serve as a potential neuroimaging marker with high sensitivity and specificity for distinguishing patients from healthy controls. Conclusion Our findings demonstrate that abnormal DCs in the left MTG can be observed in GAD, highlighting the importance of GAD pathophysiology.
Collapse
Affiliation(s)
- Lili Meng
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, China,Department of Sleep, Wuhan Hospital for Psychotherapy, Wuhan, China
| | - Yuandong Zhang
- Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - Hang Lin
- Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - Jingping Mu
- Department of Mental Health, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Heng Liao
- Department of Mental Health, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Runlan Wang
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, China,Department of Sleep, Wuhan Hospital for Psychotherapy, Wuhan, China
| | - Shufen Jiao
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, China,Department of Sleep, Wuhan Hospital for Psychotherapy, Wuhan, China
| | - Zilong Ma
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, China,Department of Sleep, Wuhan Hospital for Psychotherapy, Wuhan, China
| | - Zhuangzhuang Miao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Jiang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Wei Jiang,
| | - Xi Wang
- Department of Mental Health, Taihe Hospital, Hubei University of Medicine, Shiyan, China,Xi Wang,
| |
Collapse
|
4
|
Pan DN, Li X. Post-retrieval Distortions of Self-Referential Negative Memory: Valence Consistency Enhances Gist-Directed False, While Non-negative Interference Generates More Intrusive Updates. Front Psychol 2021; 12:668737. [PMID: 34248762 PMCID: PMC8267580 DOI: 10.3389/fpsyg.2021.668737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/20/2021] [Indexed: 11/13/2022] Open
Abstract
According to the theory of reconsolidation, the contents of an original memory can be updated after reactivation with subsequent new learnings. However, there seems to be a lack of an appropriate behavioral paradigm to study the reconsolidation of explicit self-related memory, which is of great significance to further explore its cognitive neural mechanism in the future. In two separate experiments, we adapted a trial-by-trial interfering paradigm with a self-episodic simulation process and investigated (1) whether it is possible to reconsolidate negative memories under the new behavioral paradigm and (2) how the emotional valence of post-retrieval interference material affects the reconsolidation of negative memories. The results showed that the negative memories under trial-by-trial self-simulation can be degraded and updated via post-retrieval interference processes. Individuals whose original memories were reactivated by initial background cues and who were then presented with new interference situations were less able to recall original scenes and showed more memory intrusions on these scenes than those who had experienced new learning without reactivation or only reactivation without interference. Furthermore, the extent and manner of memory change/updating were greatly influenced by the characteristics of interference information. For memories with negative valences, new learning materials with the same valence produced superior interference effects in the form of lower correct recalls and more integrated false; whereas the neutral interference materials can cause more memory intrusion. Post-retrieval memory distortions of negative self-memory may underlie different functional mechanisms.
Collapse
Affiliation(s)
- Dong-Ni Pan
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Xuebing Li
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Individual differences in associative memory among older adults explained by hippocampal subfield structure and function. Proc Natl Acad Sci U S A 2017; 114:12075-12080. [PMID: 29078387 DOI: 10.1073/pnas.1713308114] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Older adults experience impairments in episodic memory, ranging from mild to clinically significant. Given the critical role of the medial temporal lobe (MTL) in episodic memory, age-related changes in MTL structure and function may partially account for individual differences in memory. Using ultra-high-field 7T structural MRI and high-resolution 3T functional MRI (hr-fMRI), we evaluated MTL subfield thickness and function in older adults representing a spectrum of cognitive health. Participants performed an associative memory task during hr-fMRI in which they encoded and later retrieved face-name pairs. Motivated by prior research, we hypothesized that differences in performance would be explained by the following: (i) entorhinal cortex (ERC) and CA1 apical neuropil layer [CA1-stratum radiatum lacunosum moleculare (SRLM)] thickness, and (ii) activity in ERC and the dentate gyrus (DG)/CA3 region. Regression analyses revealed that this combination of factors significantly accounted for variability in memory performance. Among these metrics, CA1-SRLM thickness was positively associated with memory, whereas DG/CA3 retrieval activity was negatively associated with memory. Furthermore, including structural and functional metrics in the same model better accounted for performance than did single-modality models. These results advance the understanding of how independent but converging influences of both MTL subfield structure and function contribute to age-related memory impairment, complementing findings in the rodent and human postmortem literatures.
Collapse
|
6
|
Altered effective connectivity of the default mode network in resting-state amnestic type mild cognitive impairment. J Int Neuropsychol Soc 2013; 19:400-9. [PMID: 23425569 DOI: 10.1017/s1355617712001580] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Amnestic mild cognitive impairment (aMCI) is the transitional, heterogeneous continuum from normal elderly to Alzheimer's disease (AD). Previous studies have shown that brain functional activity in the default mode network (DMN) is impaired in aMCI patients with saliently cognitive and memory decline. However, the effective connectivity among the spatially isolated, but functionally related areas within the DMN in aMCI patients remains largely unknown. The present study examined dysfunctional connectivity of the DMN by combining an independent component analysis (ICA) approach with multivariate Granger causality analysis (mGCA) in 18 aMCI patients and 18 age-matched cognitively normal elderly. Results from mGCA showed decreased effective connectivity occurred among the middle temporal gyrus (MTG), hippocampus (HC) and fusiform gyrus (FG), as well as between the precuneus/posterior cingulate cortex (PreCN/PCC) and HC in patients with aMCI. Such an impaired connectivity was also correlated with patients' cognitive performance of the auditory verbal learning. Moreover, enhanced effective connectivity within frontal cortex emerged, which may maintain memory functions after attenuated connections within DMN activity. These findings may elucidate the dysfunctional processes in brain networks of aMCI patients, highlighting the importance of connectivity changes in the pathophysiology of aMCI.
Collapse
|
7
|
Davis T, Love BC, Maddox WT. Age-related declines in the fidelity of newly acquired category representations. Learn Mem 2012; 19:325-9. [PMID: 22815536 DOI: 10.1101/lm.024919.111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We present a theory suggesting that the ability to build category representations that reflect the nuances of category structures in the environment depends upon clustering mechanisms instantiated in an MTL-PFC-based circuit. Because function in this circuit declines with age, we predict that the ability to build category representations will be impaired in older adults. Consistent with this prediction, we find that older adults are impaired relative to younger adults at learning nuanced category structures that contain exceptions to the rule. Model-based analysis reveals that this deficit arises from older adults' failure to engage clustering mechanisms to separate exception and rule-following items in memory.
Collapse
Affiliation(s)
- Tyler Davis
- Imaging Research Center, University of Texas at Austin, Austin, Texas 78712, USA.
| | | | | |
Collapse
|
8
|
Liang JC, Wagner AD, Preston AR. Content representation in the human medial temporal lobe. ACTA ACUST UNITED AC 2012; 23:80-96. [PMID: 22275474 DOI: 10.1093/cercor/bhr379] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Current theories of medial temporal lobe (MTL) function focus on event content as an important organizational principle that differentiates MTL subregions. Perirhinal and parahippocampal cortices may play content-specific roles in memory, whereas hippocampal processing is alternately hypothesized to be content specific or content general. Despite anatomical evidence for content-specific MTL pathways, empirical data for content-based MTL subregional dissociations are mixed. Here, we combined functional magnetic resonance imaging with multiple statistical approaches to characterize MTL subregional responses to different classes of novel event content (faces, scenes, spoken words, sounds, visual words). Univariate analyses revealed that responses to novel faces and scenes were distributed across the anterior-posterior axis of MTL cortex, with face responses distributed more anteriorly than scene responses. Moreover, multivariate pattern analyses of perirhinal and parahippocampal data revealed spatially organized representational codes for multiple content classes, including nonpreferred visual and auditory stimuli. In contrast, anterior hippocampal responses were content general, with less accurate overall pattern classification relative to MTL cortex. Finally, posterior hippocampal activation patterns consistently discriminated scenes more accurately than other forms of content. Collectively, our findings indicate differential contributions of MTL subregions to event representation via a distributed code along the anterior-posterior axis of MTL that depends on the nature of event content.
Collapse
Affiliation(s)
- Jackson C Liang
- Department of Psychology, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|
9
|
Davis T, Love BC, Preston AR. Learning the exception to the rule: model-based FMRI reveals specialized representations for surprising category members. ACTA ACUST UNITED AC 2011; 22:260-73. [PMID: 21666132 DOI: 10.1093/cercor/bhr036] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Category knowledge can be explicit, yet not conform to a perfect rule. For example, a child may acquire the rule "If it has wings, then it is a bird," but then must account for exceptions to this rule, such as bats. The current study explored the neurobiological basis of rule-plus-exception learning by using quantitative predictions from a category learning model, SUSTAIN, to analyze behavioral and functional magnetic resonance imaging (fMRI) data. SUSTAIN predicts that exceptions require formation of specialized representations to distinguish exceptions from rule-following items in memory. By incorporating quantitative trial-by-trial predictions from SUSTAIN directly into fMRI analyses, we observed medial temporal lobe (MTL) activation consistent with 2 predicted psychological processes that enable exception learning: item recognition and error correction. SUSTAIN explains how these processes vary in the MTL across learning trials as category knowledge is acquired. Importantly, MTL engagement during exception learning was not captured by an alternate exemplar-based model of category learning or by standard contrasts comparing exception and rule-following items. The current findings thus provide a well-specified theory for the role of the MTL in category learning, where the MTL plays an important role in forming specialized category representations appropriate for the learning context.
Collapse
Affiliation(s)
- Tyler Davis
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA.
| | | | | |
Collapse
|
10
|
Preston AR, Bornstein AM, Hutchinson JB, Gaare ME, Glover GH, Wagner AD. High-resolution fMRI of content-sensitive subsequent memory responses in human medial temporal lobe. J Cogn Neurosci 2010; 22:156-73. [PMID: 19199423 DOI: 10.1162/jocn.2009.21195] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The essential role of the medial temporal lobe (MTL) in long-term memory for individual events is well established, yet important questions remain regarding the mnemonic functions of the component structures that constitute the region. Within the hippocampus, recent functional neuroimaging findings suggest that formation of new memories depends on the dentate gyrus and the CA(3) field, whereas the contribution of the subiculum may be limited to retrieval. During encoding, it has been further hypothesized that structures within MTL cortex contribute to encoding in a content-sensitive manner, whereas hippocampal structures may contribute to encoding in a more domain-general manner. In the current experiment, high-resolution fMRI techniques were utilized to assess novelty and subsequent memory effects in MTL subregions for two classes of stimuli--faces and scenes. During scanning, participants performed an incidental encoding (target detection) task with novel and repeated faces and scenes. Subsequent recognition memory was indexed for the novel stimuli encountered during scanning. Analyses revealed voxels sensitive to both novel faces and novel scenes in all MTL regions. However, similar percentages of voxels were sensitive to novel faces and scenes in perirhinal cortex, entorhinal cortex, and a combined region comprising the dentate gyrus, CA(2), and CA(3), whereas parahippocampal cortex, CA(1), and subiculum demonstrated greater sensitivity to novel scene stimuli. Paralleling these findings, subsequent memory effects in perirhinal cortex were observed for both faces and scenes, with the magnitude of encoding activation being related to later memory strength, as indexed by a graded response tracking recognition confidence, whereas subsequent memory effects were scene-selective in parahippocampal cortex. Within the hippocampus, encoding activation in the subiculum correlated with subsequent memory for both stimulus classes, with the magnitude of encoding activation varying in a graded manner with later memory strength. Collectively, these findings suggest a gradient of content sensitivity from posterior (parahippocampal) to anterior (perirhinal) MTL cortex, with MTL cortical regions differentially contributing to successful encoding based on event content. In contrast to recent suggestions, the present data further indicate that the subiculum may contribute to successful encoding irrespective of event content.
Collapse
|
11
|
Dudukovic NM, Preston AR, Archie JJ, Glover GH, Wagner AD. High-resolution fMRI reveals match enhancement and attentional modulation in the human medial temporal lobe. J Cogn Neurosci 2010; 23:670-82. [PMID: 20433244 DOI: 10.1162/jocn.2010.21509] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
A primary function of the medial temporal lobe (MTL) is to signal prior encounter with behaviorally relevant stimuli. MTL match enhancement--increased activation when viewing previously encountered stimuli--has been observed for goal-relevant stimuli in nonhuman primates during delayed-match-to-sample tasks and in humans during more complex relational memory tasks. Match enhancement may alternatively reflect (a) an attentional response to familiar relative to novel stimuli or (b) the retrieval of contextual details surrounding the past encounter with familiar stimuli. To gain leverage on the functional significance of match enhancement in the hippocampus, high-resolution fMRI of human MTL was conducted while participants attended, ignored, or passively viewed face and scene stimuli in the context of a modified delayed-match-to-sample task. On each "attended" trial, two goal-relevant stimuli were encountered before a probe that either matched or mismatched one of the attended stimuli, enabling examination of the consequences of encountering one of the goal-relevant stimuli as a match probe on later memory for the other (nonprobed) goal-relevant stimulus. fMRI revealed that the hippocampus was insensitive to the attentional manipulation, whereas parahippocampal cortex was modulated by scene-directed attention, and perirhinal cortex showed more subtle and general effects of attention. By contrast, all hippocampal subfields demonstrated match enhancement to the probe, and a postscan test revealed more accurate recognition memory for the nonprobed goal-relevant stimulus on match relative to mismatch trials. These data suggest that match enhancement in human hippocampus reflects retrieval of other goal-relevant contextual details surrounding a stimulus's prior encounter.
Collapse
|