1
|
Gesquiere LR, Habig B, Hansen C, Li A, Freid K, Learn NH, Alberts SC, Graham AL, Archie EA. Noninvasive measurement of mucosal immunity in a free-ranging baboon population. Am J Primatol 2020; 82:e23093. [PMID: 31930746 DOI: 10.1002/ajp.23093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 11/20/2019] [Accepted: 12/20/2019] [Indexed: 12/15/2022]
Abstract
Ecoimmunological patterns and processes remain understudied in wild primates, in part because of the lack of noninvasive methods to measure immunity. Secretory immunoglobulin A (sIgA) is the most abundant antibody present at mammalian mucosal surfaces and provides an important first line of defense against pathogens. Recent studies show that sIgA can be measured noninvasively in feces and is a good marker of mucosal immunity. Here we validated a commercial ELISA kit to measure fecal IgA in baboons, tested the robustness of its results to variation in collection and storage conditions, and developed a cost-effective in-house ELISA for baboon fecal IgA. Using data from the custom ELISA, we assessed the relationship between fecal IgA concentrations and gastrointestinal parasite burden, and tested how sex, age, and reproductive effort predict fecal IgA in wild baboons. We find that IgA concentrations can be measured in baboon feces using an in-house ELISA and are highly correlated to the values obtained with a commercial kit. Fecal IgA concentrations are stable when extracts are stored for up to 22 months at -20°C. Fecal IgA concentrations were negatively correlated with parasite egg counts (Trichuris trichiura), but not parasite richness. Fecal IgA did not vary between the sexes, but for males, concentrations were higher in adults versus adolescents. Lactating females had significantly lower fecal IgA than pregnant females, but neither pregnant nor lactating female concentrations differed significantly from cycling females. Males who engaged in more mate-guarding exhibited similar IgA concentrations to those who engaged in little mate-guarding. These patterns may reflect the low energetic costs of mucosal immunity, or the complex dependence of IgA excretion on individual condition. Adding a noninvasive measure of mucosal immunity will promote a better understanding of how ecology modulates possible tradeoffs between the immune system and other energetically costly processes in the wild.
Collapse
Affiliation(s)
| | - Bobby Habig
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| | - Christina Hansen
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey
| | - Amanda Li
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey
| | - Kimberly Freid
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey
| | - Niki H Learn
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey
| | - Susan C Alberts
- Department of Biology, Duke University, Durham, North Carolina.,Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya.,Department of Evolutionary Anthropology, Duke University, Durham, North Carolina
| | - Andrea L Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey
| | - Elizabeth A Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana.,Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
| |
Collapse
|