1
|
Jogi HR, Smaraki N, Rajak KK, Yadav AK, Bhatt M, Einstien C, Revathi A, Thakur R, Kamothi DJ, Dedeepya PVSS, Savsani HH. Revolutionizing Veterinary Health with Viral Vector-Based Vaccines. Indian J Microbiol 2024; 64:867-878. [PMID: 39282171 PMCID: PMC11399537 DOI: 10.1007/s12088-024-01341-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/13/2024] [Indexed: 09/18/2024] Open
Abstract
Vaccines signify one of the economical and reasonable means to prevent and eradicate the important infectious diseases. Conventional vaccines like live attenuated and inactivated vaccines comprise of whole pathogen either in attenuated or killed form. While, new generation vaccines have been designed to elicit immune response by genetically modifying only the nucleic acid portion of that pathogen. These new generation therapeutics include mRNA vaccines, DNA plasmid vaccines, chimeric vaccines and recombinant viral vector-based vaccines. Nucleic acid based vaccines use genetic material itself thus, they are highly stable and potent in nature to induce long-lasting immune response. Amongst these novel vaccine platforms, viral vector-based vaccines is one such emerging field which has proven to be extremely effective and potent. Nowadays, veterinary medicine has also accepted this innovative vectored vaccine platform to develop an effective control strategy against certain important viral diseases of animals. Viral vector-based vaccine uses various DNA and RNA viruses of human or animal origin to carry an immunogenic transgene of target pathogen. These vaccines enhance both humoral and cell mediated immune response without use of any accessory immune-stimulants. Till today, several viruses have been modified to be characterized as vaccine vectors. Currently, large number of research programs are going on to develop vectored vaccines and novel viral vector for veterinary use. In the present review, different kinds of viral vectored vaccines having veterinary importance have been discussed.
Collapse
Affiliation(s)
- Harsh Rajeshbhai Jogi
- Division of Biological Products, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - Nabaneeta Smaraki
- CADRAD, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - Kaushal Kishor Rajak
- Division of Biological Products, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - Ajay Kumar Yadav
- Division of Biological Products, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - Mukesh Bhatt
- CADRAD, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - Chris Einstien
- Division of Biological Products, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - Annepu Revathi
- Division of Biological Products, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - Ravi Thakur
- Division of Biological Products, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - Dhaval J Kamothi
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - P V S S Dedeepya
- Division of Biological Products, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - H H Savsani
- Veterinary College, Kamdhenu University, Junagadh, Gujarat 362001 India
| |
Collapse
|
2
|
Kim WJ, Lee AR, Hong SY, Kim SH, Kim JD, Kim SJ, Oh JS, Shim SM, Seo SU. Characterization of a Small Plaque Variant Derived from Genotype V Japanese Encephalitis Virus Clinical Isolate K15P38. J Microbiol Biotechnol 2024; 34:1592-1598. [PMID: 39081248 PMCID: PMC11380520 DOI: 10.4014/jmb.2404.04054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 08/29/2024]
Abstract
Genotype V (GV) Japanese encephalitis virus (JEV) has been predominantly reported in the Republic of Korea (ROK) since 2010. GV JEV exhibits higher virulence and distinct antigenicity compared to other genotypes, which results in reduced efficacy of existing vaccines. Research on GV JEV is essential to minimize its clinical impact, but the only available clinical strain in the ROK is K15P38, isolated from the cerebrospinal fluid of a patient in 2015. We obtained this virus from National Culture Collection for Pathogens (NCCP) and isolated a variant forming small plaques during our research. We identified that this variant has one amino acid substitution each in the PrM and NS5 proteins compared to the reported K15P38. Additionally, we confirmed that this virus exhibits delayed propagation in vitro and an attenuated phenotype in mice. The isolation of this variant is a critical reference for researchers intending to study K15P38 obtained from NCCP, and the mutations in the small plaque-forming virus are expected to be useful for studying the pathology of GV JEV.
Collapse
Affiliation(s)
- Woo-Jin Kim
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ah-Ra Lee
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Su-Yeon Hong
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sang-Hyun Kim
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jae-Deog Kim
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sung Jae Kim
- Vaxdigm Co., Ltd., Seoul 04798, Republic of Korea
- Bio & Living Engineering Major, Global Leaders College, Yonsei University, Seoul 03722, Republic of Korea
| | - Jae Sang Oh
- Department of Neurosurgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sang-Mu Shim
- Division of Acute Viral Disease, Center for Emerging Virus Research, National Institute of Infectious Diseases, Korea National Institute of Health, Cheongju 28159, Republic of Korea
| | - Sang-Uk Seo
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
3
|
Sultana R, Slavkovsky R, Ullah MR, Tasnim Z, Sultana S, Khan S, Shirin T, Haque S, Hossen MT, Islam MM, Khanom JA, Haque A, Nazneen A, Rimi NA, Hossain K, Islam MT, Hasan S, Yazdany MS, Ahsan MS, Mehedi K, Marfin AA, Letson GW, Pecenka C, Nguyen ALT. Cost of Acute and Sequelae Care for Japanese Encephalitis Patients, Bangladesh, 2011-2021. Emerg Infect Dis 2023; 29:2488-2497. [PMID: 37987586 PMCID: PMC10683813 DOI: 10.3201/eid2912.230594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023] Open
Abstract
Japanese encephalitis (JE) is associated with an immense social and economic burden. Published cost-of-illness data come primarily from decades-old studies. To determine the cost of care for patients with acute JE and initial and long-term sequelae from the societal perspective, we recruited patients with laboratory-confirmed JE from the past 10 years of JE surveillance in Bangladesh and categorized them as acute care, initial sequalae, and long-term sequelae patients. Among 157 patients, we categorized 55 as acute, 65 as initial sequelae (53 as both categories), and 90 as long-term sequelae. The average (median) societal cost of an acute JE episode was US $929 ($909), of initial sequelae US $75 ($33), and of long-term sequelae US $47 ($14). Most families perceived the effect of JE on their well-being to be extreme and had sustained debt for JE expenses. Our data about the high cost of JE can be used by decision makers in Bangladesh.
Collapse
|
4
|
Connor B, Bunn WB. The changing epidemiology of Japanese encephalitis and New data: the implications for New recommendations for Japanese encephalitis vaccine. TROPICAL DISEASES TRAVEL MEDICINE AND VACCINES 2017; 3:14. [PMID: 28883984 PMCID: PMC5537987 DOI: 10.1186/s40794-017-0057-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 07/11/2017] [Indexed: 11/10/2022]
Abstract
The epidemiology of Japanese Encephalitis and risk to the traveler has changed and continues to evolve. The spread of Japanese Encephalitis virus into new environments, changes in agricultural practice and animal vectors, climate change, peri-urban growth, changes in international travel to Asia, personal risk factors, mosquito vector free transmission, interactions with other flaviviruses and better information on infections without encephalitis and other factors make Japanese Encephalitis an underappreciated risk. There has also been a change in the incidence of Japanese Encephalitis cases that questions the current travel duration and geographic based recommendations. A safe, effective vaccine (Ixiaro) that may be administered in a short course regimen is now available in the United States without the risks of the previous vaccine. However, the vaccine is significantly underutilized. These changes in the epidemiology and new data on the risks of the Japanese Encephalitis virus require a review of the practice guidelines and expert recommendations that do not reflect the current state of knowledge.
Collapse
Affiliation(s)
- Bradley Connor
- The New York Center for Travel and Tropical Medicine, Weill Medical College of Cornell University, 110 East 55th Street, 16th Floor, New York, NY 10022 USA
| | - William B Bunn
- Medical University of South Carolina, University of Illinois at Chicago School of Public Health, Chicago, USA
| |
Collapse
|
5
|
Barrett PN, Terpening SJ, Snow D, Cobb RR, Kistner O. Vero cell technology for rapid development of inactivated whole virus vaccines for emerging viral diseases. Expert Rev Vaccines 2017; 16:883-894. [PMID: 28724343 DOI: 10.1080/14760584.2017.1357471] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Rapid development and production of vaccines against emerging diseases requires well established, validated, robust technologies to allow industrial scale production and accelerated licensure of products. Areas covered: A versatile Vero cell platform has been developed and utilized to deliver a wide range of candidate and licensed vaccines against emerging viral diseases. This platform builds on the 35 years' experience and safety record with inactivated whole virus vaccines such as polio vaccine. The current platform has been optimized to include a novel double inactivation procedure in order to ensure a highly robust inactivation procedure for novel emerging viruses. The utility of this platform in rapidly developing inactivated whole virus vaccines against pandemic (-like) influenza viruses and other emerging viruses such as West Nile, Chikungunya, Ross River and SARS is reviewed. The potential of the platform for development of vaccines against other emerging viruses such as Zika virus is described. Expert commentary: Use of this platform can substantially accelerate process development and facilitate licensure because of the substantial existing data set available for the cell matrix. However, programs to provide vaccines against emerging diseases must allow alternative clinical development paths to licensure, without the requirement to carry out large scale field efficacy studies.
Collapse
Affiliation(s)
| | | | - Doris Snow
- a Nanotherapeutics Inc. , Alachua , FL , USA
| | | | | |
Collapse
|
6
|
The Antigenic Structure of Zika Virus and Its Relation to Other Flaviviruses: Implications for Infection and Immunoprophylaxis. Microbiol Mol Biol Rev 2017; 81:81/1/e00055-16. [PMID: 28179396 DOI: 10.1128/mmbr.00055-16] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Zika virus was discovered ∼70 years ago in Uganda and maintained a low profile as a human disease agent in Africa and Asia. Only recently has it caused explosive outbreaks in previously unaffected regions, first in Oceania and then in the Americas since 2015. Of special concern is the newly identified link between congenital malformations (especially microcephaly) and Zika virus infections during pregnancy. At present, it is unclear whether Zika virus changed its pathogenicity or whether the huge number of infections allowed the recognition of a previously cryptic pathogenic property. The purpose of this review is to discuss recent data on the molecular antigenic structure of Zika virus in the context of antibody-mediated neutralization and antibody-dependent enhancement (ADE) of infection, a phenomenon that has been implicated in the development of severe disease caused by the related dengue viruses. Emphasis is given to epitopes of antibodies that potently neutralize Zika virus and also to epitopes that provide antigenic links to other important human-pathogenic flaviviruses such as dengue, yellow fever, West Nile, Japanese encephalitis, and tick-borne encephalitis viruses. The antigenic cross talk between Zika and dengue viruses appears to be of special importance, since they cocirculate in many regions of endemicity and sequential infections are likely to occur frequently. New insights into the molecular antigenic structure of Zika virus and flaviviruses in general have provided the foundation for great progress made in developing Zika virus vaccines and antibodies for passive immunization.
Collapse
|
7
|
Rogers B, Bunn WB, Connor BA. An Update on Travel Vaccines and Issues in Travel and International Medicine. Workplace Health Saf 2016; 64:462-468. [PMID: 27555602 DOI: 10.1177/2165079916633478] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The fields of travel and international medicine are rapidly changing and growing. The role of occupational and travel health nurses is expanding and should be a focus for the future. At the American Association of Occupational Health Nurses Annual meeting on March 24, 2015, in Boston, five presentations were included in the session, An Update on Travel Vaccines and Issues in Travel and International Medicine. This article summarizes three of the presentations and includes a portion of the information generated by the Centers for Disease Control and Prevention (CDC) included in the fourth presentation. The first section focuses on the Essential Elements of Travel Medicine Programs including the pre-travel care assessment, trip research and risk identification, medication intervention review, non-pharmaceutical and prevention strategies, and post-travel care. The next section is an overview of key issues for business travelers. The growth in the number of international business travelers and unique aspects of business travel are emphasized in a comprehensive travel health program. This section also includes a discussion of expatriates and their special risks identified in recent literature (e.g., an assessment of the significant costs of health events and productivity losses by both business travelers and expatriates). The final section offers a specific example of a vaccine-preventable disease, namely, Japanese encephalitis (JE) virus, and needed changes in JE vaccine recommendations.
Collapse
|
8
|
Variation of the specificity of the human antibody responses after tick-borne encephalitis virus infection and vaccination. J Virol 2014; 88:13845-57. [PMID: 25253341 DOI: 10.1128/jvi.02086-14] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Tick-borne encephalitis (TBE) virus is an important human-pathogenic flavivirus endemic in large parts of Europe and Central and Eastern Asia. Neutralizing antibodies specific for the viral envelope protein E are believed to mediate long-lasting protection after natural infection and vaccination. To study the specificity and individual variation of human antibody responses, we developed immunoassays with recombinant antigens representing viral surface protein domains and domain combinations. These allowed us to dissect and quantify antibody populations of different fine specificities in sera of TBE patients and vaccinees. Postinfection and postvaccination sera both displayed strong individual variation of antibody titers as well as the relative proportions of antibodies to different domains of E, indicating that the immunodominance patterns observed were strongly influenced by individual-specific factors. The contributions of these antibody populations to virus neutralization were quantified by serum depletion analyses and revealed a significantly biased pattern. Antibodies to domain III, in contrast to what was found in mouse immunization studies with TBE and other flaviviruses, did not play any role in the human neutralizing antibody response, which was dominated by antibodies to domains I and II. Importantly, most of the neutralizing activity could be depleted from sera by a dimeric soluble form of the E protein, which is the building block of the icosahedral herringbone-like shell of flaviviruses, suggesting that antibodies to more complex quaternary epitopes involving residues from adjacent dimers play only a minor role in the total response to natural infection and vaccination in humans. IMPORTANCE Tick-borne encephalitis (TBE) virus is a close relative of yellow fever, dengue, Japanese encephalitis, and West Nile viruses and distributed in large parts of Europe and Central and Eastern Asia. Antibodies to the viral envelope protein E prevent viral attachment and entry into cells and thus mediate virus neutralization and protection from disease. However, the fine specificity and individual variation of neutralizing antibody responses are currently not known. We have therefore developed new in vitro assays for dissecting the antibody populations present in blood serum and determining their contribution to virus neutralization. In our analysis of human postinfection and postvaccination sera, we found an extensive variation of the antibody populations present in sera, indicating substantial influences of individual-specific factors that control the specificity of the antibody response. Our study provides new insights into the immune response to an important human pathogen that is of relevance for the design of novel vaccines.
Collapse
|
9
|
Pediatric Travel Medicine: Challenges for the Primary Care and Travel Medicine Specialist. Curr Infect Dis Rep 2013; 15:216-21. [DOI: 10.1007/s11908-013-0330-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Immunogenicity and Protective Effectiveness of Japanese Encephalitis Vaccine: A Prospective Multicenter Cohort Study. ACTA ACUST UNITED AC 2013. [DOI: 10.14776/kjpid.2013.20.3.131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|