1
|
Miri S, Saini R, Davoodi SM, Pulicharla R, Brar SK, Magdouli S. Biodegradation of microplastics: Better late than never. CHEMOSPHERE 2022; 286:131670. [PMID: 34351281 DOI: 10.1016/j.chemosphere.2021.131670] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/13/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Plastics use is growing due to its applications in the economy, human health and aesthetics. The major plastic particles in the form of microplastics (MPs) released into the environment are made up of polyethylene (PE), polypropylene (PP), polyvinylchloride (PVC), and polyethylene terephthalate (PET). Tremendous usage and continuous accumulation of MPs in the environment pose a global threat to ecosystems and human health. The current knowledge of biotechnological, aerobic and aerobic biodegradation approaches emphasizes the microbial culture's potential towards MPs removal. This review selectively provides recent biotechnological advances such as biostimulation, bioaugmentation and enzymatic biodegradation that can be applied for MPs removal by biodegradation and bioaccumulation. This review summarizes the knowledge and the research exploration on the biodegradation of synthetic organic MPs with different biodegradability. However, further research is still needed to understand the underlying mechanism of MPs biodegradation in soil and water systems, leading to the development of an effective method for MPs removal.
Collapse
Affiliation(s)
- Saba Miri
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada; Institut National de La Recherche Scientifique, Centre-Eau, Terre et Environnement, 490, Rue de La Couronne, Québec, G1K 9A9, Canada
| | - Rahul Saini
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada
| | - Seyyed Mohammadreza Davoodi
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada; Institut National de La Recherche Scientifique, Centre-Eau, Terre et Environnement, 490, Rue de La Couronne, Québec, G1K 9A9, Canada
| | - Rama Pulicharla
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada; Institut National de La Recherche Scientifique, Centre-Eau, Terre et Environnement, 490, Rue de La Couronne, Québec, G1K 9A9, Canada.
| | - Sara Magdouli
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada
| |
Collapse
|
2
|
Wiltschi B, Cernava T, Dennig A, Galindo Casas M, Geier M, Gruber S, Haberbauer M, Heidinger P, Herrero Acero E, Kratzer R, Luley-Goedl C, Müller CA, Pitzer J, Ribitsch D, Sauer M, Schmölzer K, Schnitzhofer W, Sensen CW, Soh J, Steiner K, Winkler CK, Winkler M, Wriessnegger T. Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. Biotechnol Adv 2020; 40:107520. [DOI: 10.1016/j.biotechadv.2020.107520] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 10/18/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022]
|
3
|
Nichols TM, Kennedy NW, Tullman-Ercek D. A genomic integration platform for heterologous cargo encapsulation in 1,2-propanediol utilization bacterial microcompartments. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107496] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
4
|
Aparicio T, Nyerges A, Martínez-García E, de Lorenzo V. High-Efficiency Multi-site Genomic Editing of Pseudomonas putida through Thermoinducible ssDNA Recombineering. iScience 2020; 23:100946. [PMID: 32179472 PMCID: PMC7068128 DOI: 10.1016/j.isci.2020.100946] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/06/2020] [Accepted: 02/21/2020] [Indexed: 12/21/2022] Open
Abstract
Application of single-stranded DNA recombineering for genome editing of species other than enterobacteria is limited by the efficiency of the recombinase and the action of endogenous mismatch repair (MMR) systems. In this work we have set up a genetic system for entering multiple changes in the chromosome of the biotechnologically relevant strain EM42 of Pseudomononas putida. To this end high-level heat-inducible co-transcription of the rec2 recombinase and P. putida's allele mutLE36KPP was designed under the control of the PL/cI857 system. Cycles of short thermal shifts followed by transformation with a suite of mutagenic oligos delivered different types of genomic changes at frequencies up to 10% per single modification. The same approach was instrumental to super-diversify short chromosomal portions for creating libraries of functional genomic segments-e.g., ribosomal-binding sites. These results enabled multiplexing of genome engineering of P. putida, as required for metabolic reprogramming of this important synthetic biology chassis.
Collapse
Affiliation(s)
- Tomas Aparicio
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid 28049, Spain
| | - Akos Nyerges
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged 6726, Hungary
| | - Esteban Martínez-García
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid 28049, Spain.
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid 28049, Spain.
| |
Collapse
|
5
|
Oesterle S, Gerngross D, Schmitt S, Roberts TM, Panke S. Efficient engineering of chromosomal ribosome binding site libraries in mismatch repair proficient Escherichia coli. Sci Rep 2017; 7:12327. [PMID: 28951570 PMCID: PMC5615074 DOI: 10.1038/s41598-017-12395-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/08/2017] [Indexed: 11/20/2022] Open
Abstract
Multiplexed gene expression optimization via modulation of gene translation efficiency through ribosome binding site (RBS) engineering is a valuable approach for optimizing artificial properties in bacteria, ranging from genetic circuits to production pathways. Established algorithms design smart RBS-libraries based on a single partially-degenerate sequence that efficiently samples the entire space of translation initiation rates. However, the sequence space that is accessible when integrating the library by CRISPR/Cas9-based genome editing is severely restricted by DNA mismatch repair (MMR) systems. MMR efficiency depends on the type and length of the mismatch and thus effectively removes potential library members from the pool. Rather than working in MMR-deficient strains, which accumulate off-target mutations, or depending on temporary MMR inactivation, which requires additional steps, we eliminate this limitation by developing a pre-selection rule of genome-library-optimized-sequences (GLOS) that enables introducing large functional diversity into MMR-proficient strains with sequences that are no longer subject to MMR-processing. We implement several GLOS-libraries in Escherichia coli and show that GLOS-libraries indeed retain diversity during genome editing and that such libraries can be used in complex genome editing operations such as concomitant deletions. We argue that this approach allows for stable and efficient fine tuning of chromosomal functions with minimal effort.
Collapse
Affiliation(s)
- Sabine Oesterle
- Department for Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Daniel Gerngross
- Department for Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Steven Schmitt
- Department for Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Tania Michelle Roberts
- Department for Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Sven Panke
- Department for Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland.
| |
Collapse
|