1
|
Malik A, Kashyap HK. Solvation Shell Structures of Ammonia in Reline and Ethaline Deep Eutectic Solvents. J Phys Chem B 2023; 127:2499-2510. [PMID: 36912865 DOI: 10.1021/acs.jpcb.2c07929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Because of increasing atmospheric anthropogenic ammonia (NH3) emission, researchers are devising new techniques to capture NH3. Deep eutectic solvents (DESs) are found as potential media for NH3 mitigation. In the present study, we have carried out ab initio molecular dynamics (AIMD) simulations to decipher the solvation shell structures of an ammonia solute in reline (1:2 mixture of choline chloride and urea) and ethaline (1:2 mixture of choline chloride and ethylene glycol) DESs. We aim to resolve the fundamental interactions which help stabilize NH3 in these DESs, focusing on the structural arrangement of the DES species in the nearest solvation shell around NH3 solute. In reline, the hydrogen atoms of NH3 are preferentially solvated by chloride anions and the carbonyl oxygen atoms of urea. The nitrogen atom of NH3 renders hydrogen bonding with hydroxyl hydrogen of the choline cation. The positively charged head groups of the choline cations prefer to stay away from NH3 solute. In ethaline, strong hydrogen bonding interaction exists between the nitrogen atom of NH3 and hydroxyl hydrogen atoms of ethylene glycol. The hydrogen atoms of NH3 are found to be solvated by hydroxyl oxygen atoms of ethylene glycol and choline cation. While ethylene glycol molecules play a crucial role in solvating NH3, the chloride anions remain passive in deciding the first solvation shell. In both the DESs, choline cations approach NH3 from their hydroxyl group side. We observe slightly stronger solute-solvent charge transfer and hydrogen bonding interaction in ethaline than those in reline.
Collapse
Affiliation(s)
- Akshay Malik
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hemant K Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
2
|
Malik A, Kashyap HK. Solvent Organization around Methane Dissolved in Archetypal Reline and Ethaline Deep Eutectic Solvents as Revealed by AIMD Investigation. J Phys Chem B 2022; 126:6472-6482. [PMID: 35977089 DOI: 10.1021/acs.jpcb.2c02406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Because of the rising concentration of harmful greenhouse gases like methane in the atmosphere, researchers are striving for developing novel techniques for capturing these gases. Recently, neoteric liquids such as deep eutectic solvents (DESs) have emerged as an efficient means of sequestration of methane. Herein, we have performed ab initio molecular dynamics (AIMD) simulations to elucidate the solvation structure around a methane molecule dissolved in reline and ethaline DESs. We aim to elicit the structural organization of different constituents of the DESs in the vicinity of methane, particularly highlighting the key interactions that stabilize such gases in DESs. We observe quite different solvation structures of methane in the two DESs. In ethaline, chloride ions play an active role in solvating methane. Instead, in reline, chloride ions do not interact much with the methane molecule in the first solvation shell. In reline, choline cations approach the methane molecule from their hydroxyl group side, whereas urea molecules approach methane from their carbonyl oxygen as well as amide group sides. In ethaline, ethylene glycol and Cl- dominate the nearest neighbor solvation structure around the methane molecule. In both the DESs, we do not observe any significant methane-DES charge transfer interactions, apart from what is present between choline cation and Cl- anion.
Collapse
Affiliation(s)
- Akshay Malik
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Hemant K Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| |
Collapse
|
3
|
Kashyap HK. Deciphering Ethanol-Driven Swelling, Rupturing, Aggregation, and Fusion of Lipid Vesicles Using Coarse-Grained Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2445-2459. [PMID: 35167280 DOI: 10.1021/acs.langmuir.1c02763] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Traditionally, liquid ethanol is known to enhance the permeability of lipid membranes and causes vesicle aggregation and fusion. However, how the amphiphilic ethanol molecules perturb the lipid vesicles to facilitate their aggregation or fusion has not been addressed at any level of molecular simulations. Herein, not only have we developed a coarse-grained (CG) model for liquid ethanol, its aqueous mixture, and hydrated lipid membranes for molecular dynamics (MD) simulations, but also utilized it to delineate the aggregation and fusion of lipid vesicles using CG-MD simulations with multimillion particles. We have systematically parametrized the force-field for pure ethanol and its interactions with hydrated POPC and POPE model lipid membranes. In this process, we have successfully reproduced the bulk ethanol structure and concentration-dependent density of aqueous ethanol. To quantify the interaction of ethanol with lipid membranes, we have reproduced the transfer free energy of the ethanol molecule across the hydrated bilayers, and the concentration-dependent distribution of ethanol molecules across the lipid bilayers. After having acceptable force-field parameters for ethanol-membrane interactions, we have checked the effect of ethanol toward the vesicles comprising POPC lipids. We observe a rapid increase in the size of the POPC lipid vesicles with increasing amounts of ethanol up to 30 mol %. We unambiguously observe swelling and decrease in the thickness of the POPC vesicles with increasing amounts of ethanol up to 30 mol %, beyond which the vesicles begin to lose their integrity and rupture at higher mol % of ethanol. The fusion study of two vesicles demonstrates that fused vesicles can be obtained from 20 to 30 mol % of ethanol provided that they are brought closer than a critical distance at a particular mol %. The multivesicle simulations show that along with the increase in the sizes of vesicles the propensity of vesicle aggregation increases as the mol % of ethanol increases.
Collapse
Affiliation(s)
- Hemant K Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
4
|
Shobhna, Kumari M, Kashyap HK. Mechanistic Insight on BioIL-Induced Structural Alterations in DMPC Lipid Bilayer. J Phys Chem B 2021; 125:11955-11966. [PMID: 34672578 DOI: 10.1021/acs.jpcb.1c06218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The emerging application risks of traditional ionic liquids (ILs) toward the ecosystem have changed the perception regarding their greenness. This resulted in the exploration of their more biocompatible alternatives known as biocompatible ILs (BioILs). Here, we have investigated the impact of two such biocompatible cholinium amino acid-based ILs on the structural behavior of model homogeneous DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) lipid bilayer using all-atom molecular dynamics simulation technique. Two classic cholinium-amino acid-based ILs, cholinium glycinate ([Ch][Gly]) and cholinium phenylalaninate ([Ch][Phe]), which differ only by the side chain lengths and hydrophobicity of the anions, have been utilized in the present work. Simultaneous analysis of the bilayer structural properties reveals that the existence of [Ch][Gly] BioIL above a particular concentration induces phase transition from fluid phase to gel phase in the DMPC lipid bilayer. Such a freezing of lipid bilayer upon the exposure to concentrated aqueous solution of [Ch][Gly] BioIL indicates the harmfulness of this BioIL toward the cell membranes majorly containing DMPC lipids, as the cell freezing can negatively affect its stability and functionality. Despite having a more hydrophobic amino acid side chain of [Phe]- anion in [Ch][Phe], in the case of bilayer-[Ch][Phe] systems we observe the minimal impact of [Ch][Phe] BioIL on the DMPC bilayer properties up to 10 mol % concentration. In the presence of these BioIL, we observe the thickening of the bilayer and accumulation of the cations and anions of the BioILs at the interface of DMPC lipid heads and tails. The transfer free-energy profile of a [Phe]- anion from aqueous phase to membrane center also indicates the anion partitioning at lipid head-tail interface and its inability to penetrate in the lipid membrane tail region. In contrast, the free-energy profile for a [Gly]- anion offers a very high energy barrier to the insertion of [Gly]- into the membrane interior, leading to accumulation of [Gly]- anions at the lipid head-water region.
Collapse
Affiliation(s)
- Shobhna
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Monika Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hemant K Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
5
|
Malik A, Kashyap HK. Multiple evidences of dynamic heterogeneity in hydrophobic deep eutectic solvents. J Chem Phys 2021; 155:044502. [PMID: 34340384 DOI: 10.1063/5.0054699] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Hydrophobic deep eutectic solvents (HDESs) have gained immense popularity because of their promising applications in extraction processes. Herein, we employ atomistic molecular dynamics simulations to unveil the dynamics of DL-menthol (DLM) based HDESs with hexanoic (C6), octanoic (C8), and decanoic (C10) acids as hydrogen bond donors. The particular focus is on understanding the nature of dynamics with changing acid tail length. For all three HDESs, two modes of hydrogen bond relaxations are observed. We observe longer hydrogen bond lifetimes of the inter-molecular hydrogen bonding interactions between the carbonyl oxygen of the acid and hydroxyl oxygen of menthol with hydroxyl hydrogen of both acids and menthol. We infer strong hydrogen bonding between them compared to that between hydroxyl oxygen of acids and hydroxyl hydrogens of menthol and acids, marked by a faster decay rate and shorter hydrogen bond lifetime. The translational dynamics of the species in the HDES becomes slower with increasing tail length of the organic acid. Slightly enhanced caging is also observed for the HDES with a longer tail length of the acids. The evidence of dynamic heterogeneity in the displacements of the component molecules is observed in all the HDESs. From the values of the α-relaxation time scale, we observe that the molecular displacements become random in a shorter time scale for DLM-C6. The analysis of the self-van Hove function reveals that the overall distance covered by DLM and acid molecules in the respective HDES is more than what is expected from ideal diffusion. As marked by the shorter time scale associated with hole filling, the diffusion of the oxygen atom of menthol and the carbonyl oxygen of acid from one site to the other is fastest for hexanoic acid containing HDES.
Collapse
Affiliation(s)
- Akshay Malik
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hemant K Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
6
|
Panić M, Andlar M, Tišma M, Rezić T, Šibalić D, Cvjetko Bubalo M, Radojčić Redovniković I. Natural deep eutectic solvent as a unique solvent for valorisation of orange peel waste by the integrated biorefinery approach. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 120:340-350. [PMID: 33340816 DOI: 10.1016/j.wasman.2020.11.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
This research investigates the use of seven natural deep eutectic solvents (NADESs) for valorisation of orange peel waste, with the final goal to propose a unique NADES for integrated biorefinery. Initial screening of NADESs revealed the excellent ability of cholinium-based NADES with ethylene glycol as hydrogen bond donor (ChEg50) to serve as a medium for orange peel-catalysed kinetic resolution (hydrolysis) of (R,S)-1-phenylethyl acetate with high enantioselectivity (ee = 83.2%, X = 35%), as well as it's stabilizing effect on the hydrolytic enzymes (hydrolytic enzymes within ChEg50 peel extract were stabile during 20 days at 4 °C). The ChEg50 also showed a satisfactory capacity to extract D-limonene (0.5 mg gFW-1), and excellent capacity to extract polyphenols (45.7 mg gFW-1), and proteins (7.7 mg gFW-1) from the peel. Based on the obtained results, the integrated biorefinery of orange peel waste using ChEg50 in a multistep process was performed. Firstly, enantioselective kinetic resolution was performed (step I; ee = 83.2%, X = 35%), followed by isolation of the product 1-phenylethanol (step II; h = 82.2%) and extraction of polyphenols (step III; h = 86.8%) from impoverished medium. Finally, the residual orange peel was analysed for sugar and lignin content, and results revealed the potential of waste peel for the anaerobic co-digestion process. The main bottlenecks and futures perspective of NADES-assisted integrated biorefinery of orange peel waste were outlined through SWOT analysis.
Collapse
Affiliation(s)
- Manuela Panić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotijeva 2, 10000 Zagreb, Croatia
| | - Martina Andlar
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotijeva 2, 10000 Zagreb, Croatia
| | - Marina Tišma
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, Osijek HR-31000, Croatia
| | - Tonči Rezić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotijeva 2, 10000 Zagreb, Croatia
| | - Darijo Šibalić
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, Osijek HR-31000, Croatia
| | - Marina Cvjetko Bubalo
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotijeva 2, 10000 Zagreb, Croatia.
| | | |
Collapse
|
7
|
Kumari P, Kumari M, Kashyap HK. How Pure and Hydrated Reline Deep Eutectic Solvents Affect the Conformation and Stability of Lysozyme: Insights from Atomistic Molecular Dynamics Simulations. J Phys Chem B 2020; 124:11919-11927. [DOI: 10.1021/acs.jpcb.0c09873] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Pratibha Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Monika Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hemant K. Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
8
|
Kaur S, Kumari M, Kashyap HK. Microstructure of Deep Eutectic Solvents: Current Understanding and Challenges. J Phys Chem B 2020; 124:10601-10616. [DOI: 10.1021/acs.jpcb.0c07934] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Supreet Kaur
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Monika Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hemant K. Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
9
|
Kumari M, Gupta A, Shobhna, Kashyap HK. Molecular Dynamics Evaluation of the Effect of Cholinium Phenylalaninate Biocompatible Ionic Liquid on Biomimetic Membranes. J Phys Chem B 2020; 124:6748-6762. [PMID: 32786926 DOI: 10.1021/acs.jpcb.0c03433] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Toward the search of sustainable green solvents, choline amino acid ([Ch][AA]) ionic liquids (ILs), mainly derived from renewable feedstocks, have emerged as a promising atoxic alternative to the conventional solvents. Recent studies have shown the remarkably benign nature of cholinium-based ILs against biomimetic phospholipid membranes. However, few of the contemporaneous experimental studies have contradicted the aforesaid ecofriendly nature of these ILs with anions comprising longer alkyl or aromatic tails. Aiming to understand the influence of amino acid side-chain variation in a particular bio-IL on biomembranes, herein, we have evaluated the effect of cholinium phenylalaninate ([Ch][Phe]) IL on the structural stability of homogeneous biomimetic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) lipid bilayers using atomistic molecular dynamics simulations. Although we observe spontaneous intercalation of aromatic rings of [Phe]- anions in the hydrophobic region of the bilayers, the polar backbone of the anion remains coordinated with the lipid polar part through strong electrostatic and H-bonding interactions. Besides, the [Ch]+ cations get accumulated at the lipid-water interface to counter the excess negative charge density. The intercalation of the anionic rings causes significant perturbations in the lipid structural arrangement while still maintaining the bilayer integrity. The quantitative evaluation to probe the deteriorating effect of this bio-IL application establishes anions as the principal component causing the observed structural perturbations. The analysis of the structural properties along with the free energy assessment reveals the higher efficacy of [Ch][Phe] bio-IL to perturb the POPE bilayer structure than the POPC bilayer.
Collapse
Affiliation(s)
- Monika Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Aditya Gupta
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shobhna
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hemant K Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
10
|
Shobhna, Kumari M, Kashyap HK. A coarse-grained model of dimethyl sulfoxide for molecular dynamics simulations with lipid membranes. J Chem Phys 2020; 153:035104. [DOI: 10.1063/5.0014614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Shobhna
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Monika Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hemant K. Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|