1
|
Wang Y, Xu J, Xie Y, Zhou D, Guo M, Qin Y, Yi K, Tian J, You T. Interventions for prevention and treatment of trastuzumab-induced cardiotoxicity: an umbrella review of systematic reviews and meta-analyses. Front Pharmacol 2024; 15:1479983. [PMID: 39703393 PMCID: PMC11655193 DOI: 10.3389/fphar.2024.1479983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/14/2024] [Indexed: 12/21/2024] Open
Abstract
Background Trastuzumab therapy for HER2-positive cancers is associated with cardiotoxicity. This umbrella review synthesizes evidence from systematic reviews and meta-analyses on cardioprotective interventions during trastuzumab treatment. Methods A comprehensive search was conducted in PubMed, Embase, Cochrane Library, and Web of Science. Systematic reviews and meta-analyses examining cardioprotective interventions in patients receiving trastuzumab were included. The methodological quality was assessed using the AMSTAR-2 tool. Data on cardiac events, treatment interruptions, left ventricular ejection fraction (LVEF) changes, and exercise interventions were synthesized. Results Ten systematic reviews met the inclusion criteria. Statins demonstrated the strongest cardioprotective effect (RR = 0.47, 95% CI: 0.26-0.84), potentially preventing more than half of cardiac events during trastuzumab therapy, followed by beta-blockers (RR = 0.61, 95% CI: 0.39-0.93). Beta-blockers and ACEIs effectively reduced treatment interruptions, enabling approximately 40% more patients to maintain treatment continuity (RR = 0.63, 95% CI: 0.47-0.86). Among non-pharmacological interventions, structured exercise programs showed significant benefits in preserving cardiac function, demonstrating meaningful improvements in resting LVEF (WMD = -3.27%, 95% CI: -5.86 to -0.68). Discussion This review demonstrates that cardioprotective interventions, particularly statins and beta-blockers, significantly reduce the risk of cardiac complications during trastuzumab therapy. The positive impact on cardiac events and treatment interruptions suggests these interventions may enhance overall treatment efficacy by allowing more patients to complete their prescribed course. Conclusion Evidence strongly supports the systematic implementation of cardioprotective strategies in clinical practice, particularly statins and beta-blockers, as part of routine care protocols for patients receiving trastuzumab therapy. These interventions demonstrate significant potential in preventing cardiac complications and maintaining treatment continuity. Further research should focus on optimizing personalized approaches and evaluating long-term outcomes.
Collapse
Affiliation(s)
- Yunfang Wang
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, China
| | - Jianguo Xu
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yafei Xie
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Zhou
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Mingyue Guo
- Department of Obstetrics, Xiangya Hospital Central South University, Changsha, China
| | - Yu Qin
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Kang Yi
- Department of Cardiovascular Surgery, Gansu Provincial Hospital, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Diagnosis and Treatment of Congenital Heart Disease, Lanzhou, China
| | - Jinhui Tian
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Evidence-based Medicine of Gansu Province, Lanzhou University, Lanzhou, China
| | - Tao You
- Department of Cardiovascular Surgery, Gansu Provincial Hospital, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Diagnosis and Treatment of Congenital Heart Disease, Lanzhou, China
| |
Collapse
|
2
|
Mehrotra S, Kupani M, Kaur J, Kaur J, Pandey RK. Immunotherapy guided precision medicine in solid tumors. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 140:249-292. [PMID: 38762271 DOI: 10.1016/bs.apcsb.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Cancer is no longer recognized as a single disease but a collection of diseases each with its defining characteristics and behavior. Even within the same cancer type, there can be substantial heterogeneity at the molecular level. Cancer cells often accumulate various genetic mutations and epigenetic alterations over time, leading to a coexistence of distinct subpopulations of cells within the tumor. This tumor heterogeneity arises not only due to clonal outgrowth of cells with genetic mutations, but also due to interactions of tumor cells with the tumor microenvironment (TME). The latter is a dynamic ecosystem that includes cancer cells, immune cells, fibroblasts, endothelial cells, stromal cells, blood vessels, and extracellular matrix components, tumor-associated macrophages and secreted molecules. The complex interplay between tumor heterogeneity and the TME makes it difficult to develop one-size-fits-all treatments and is often the cause of therapeutic failure and resistance in solid cancers. Technological advances in the post-genomic era have given us cues regarding spatial and temporal tumor heterogeneity. Armed with this knowledge, oncologists are trying to target the unique genomic, epigenetic, and molecular landscape in the tumor cell that causes its oncogenic transformation in a particular patient. This has ushered in the era of personalized precision medicine (PPM). Immunotherapy, on the other hand, involves leveraging the body's immune system to recognize and attack cancer cells and spare healthy cells from the damage induced by radiation and chemotherapy. Combining PPM and immunotherapy represents a paradigm shift in cancer treatment and has emerged as a promising treatment modality for several solid cancers. In this chapter, we summarise major types of cancer immunotherapy and discuss how they are being used for precision medicine in different solid tumors.
Collapse
Affiliation(s)
- Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India.
| | - Manu Kupani
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Jaismeen Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Jashandeep Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Rajeev Kumar Pandey
- Research and Development-Protein Biology, Thermo Fisher Scientific, Bengaluru, Karnataka, India
| |
Collapse
|
3
|
Maron BJ, Maron MS, Sherrid MV, Ommen SR, Rowin EJ. Personalized Treatment Strategies Effective in Hypertrophic Cardiomyopathy Do Not Rely on Genomics in 2022: A Different Tale of Precision Medicine. Am J Cardiol 2022; 183:150-152. [PMID: 36114018 DOI: 10.1016/j.amjcard.2022.07.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/01/2022]
Affiliation(s)
- Barry J Maron
- HCM Center, Lahey Hospital and Medical Center, Burlington, Massachusetts
| | - Martin S Maron
- HCM Center, Lahey Hospital and Medical Center, Burlington, Massachusetts
| | - Mark V Sherrid
- Hypertrophic Cardiomyopathy Program, Division of Cardiology. New York University Langone Health, New York, New York
| | - Steve R Ommen
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Ethan J Rowin
- HCM Center, Lahey Hospital and Medical Center, Burlington, Massachusetts.
| |
Collapse
|
4
|
Liang Z, He Y, Hu X. Cardio-Oncology: Mechanisms, Drug Combinations, and Reverse Cardio-Oncology. Int J Mol Sci 2022; 23:10617. [PMID: 36142538 PMCID: PMC9501315 DOI: 10.3390/ijms231810617] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Chemotherapy, radiotherapy, targeted therapy, and immunotherapy have brought hope to cancer patients. With the prolongation of survival of cancer patients and increased clinical experience, cancer-therapy-induced cardiovascular toxicity has attracted attention. The adverse effects of cancer therapy that can lead to life-threatening or induce long-term morbidity require rational approaches to prevention and treatment, which requires deeper understanding of the molecular biology underpinning the disease. In addition to the drugs used widely for cardio-protection, traditional Chinese medicine (TCM) formulations are also efficacious and can be expected to achieve "personalized treatment" from multiple perspectives. Moreover, the increased prevalence of cancer in patients with cardiovascular disease has spurred the development of "reverse cardio-oncology", which underscores the urgency of collaboration between cardiologists and oncologists. This review summarizes the mechanisms by which cancer therapy induces cardiovascular toxicity, the combination of antineoplastic and cardioprotective drugs, and recent advances in reverse cardio-oncology.
Collapse
Affiliation(s)
| | | | - Xin Hu
- China–Japan Union Hospital of Jilin University, Jilin University, Changchun 130033, China
| |
Collapse
|
5
|
Ge F, Du Y, He Y. Direct Observation of Endocytosis Dynamics of Anti-ErbB Modified Single Nanocargoes. ACS NANO 2022; 16:5325-5334. [PMID: 35349254 DOI: 10.1021/acsnano.2c00184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The ErbB receptor family, including the epidermal growth factor receptor (EGFR) and ErbB2/3/4, regulate cell proliferation, differentiation, apoptosis, motility, etc., and their abnormalities can cause cancer and other diseases. Ligand-induced endocytosis of ErbB receptors is the key to various cancer treatment strategies, and different techniques have been developed to study this important process. Among them, single particle tracking (SPT) can reveal the spatiotemporal heterogeneity of ErbB receptors on the live cell membrane and has been used to characterize the EGFR dimerization process. Herein, we studied the endocytosis dynamics of two different ErbB receptors using dark-field microscopy. With anti-ErbB modified plasmonic gold nanorods (AuNRs) as probes, we compared the trajectories of individual anti-EGFR AuNRs (cAuNRs) and anti-ErbB AuNRs (tAuNRs) interacting with MCF-7 cells in situ in real time. The results revealed that the internalization rate of cAuNRs was faster than that of tAuNRs. Detailed SPT analysis suggests that cAuNRs enter cells through EGFR endocytosis pathway, and multiple intracellular transport modes sort the cAuNRs away from the transmembrane site. In contrast, the endocytosis resistance of ErbB2 slows down the cellular uptake rate of tAuNRs and causes some tAuNRs-ErbB2 complexes to be confined on the membrane with "circular" and "rolling circle" motions for a much longer time. Our results provide insights into the endocytosis process of the ErbB receptor family at the nanometer scale and could be potentially useful to develop cancer treatment strategies.
Collapse
Affiliation(s)
- Feng Ge
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Yi Du
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Yan He
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Xu T, Vorobyeva A, Schulga A, Konovalova E, Vorontsova O, Ding H, Gräslund T, Tashireva LA, Orlova A, Tolmachev V, Deyev SM. Imaging-Guided Therapy Simultaneously Targeting HER2 and EpCAM with Trastuzumab and EpCAM-Directed Toxin Provides Additive Effect in Ovarian Cancer Model. Cancers (Basel) 2021; 13:3939. [PMID: 34439094 PMCID: PMC8393281 DOI: 10.3390/cancers13163939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/23/2021] [Accepted: 08/02/2021] [Indexed: 12/29/2022] Open
Abstract
Efficient treatment of disseminated ovarian cancer (OC) is challenging due to its heterogeneity and chemoresistance. Overexpression of human epidermal growth factor receptor 2 (HER2) and epithelial cell adhesion molecule (EpCAM) in approx. 30% and 70% of ovarian cancers, respectively, allows for co-targeted treatment. The clinical efficacy of the monoclonal antibody trastuzumab in patients with HER2-positive breast, gastric and gastroesophageal cancers makes it readily available as the HER2-targeting component. As the EpCAM-targeting component, we investigated the designed ankyrin repeat protein (DARPin) Ec1 fused to a truncated variant of Pseudomonas exotoxin A with reduced immunogenicity and low general toxicity (LoPE). Ec1-LoPE was radiolabeled, evaluated in ovarian cancer cells in vitro and its biodistribution and tumor-targeting properties were studied in vivo. The therapeutic efficacy of Ec1-LoPE alone and in combination with trastuzumab was studied in mice bearing EpCAM- and HER2-expressing SKOV3 xenografts. SPECT/CT imaging enabled visualization of EpCAM and HER2 expression in the tumors. Co-treatment using Ec1-LoPE and trastuzumab was more effective at reducing tumor growth and prolonged the median survival of mice compared with mice in the control and monotherapy groups. Repeated administration of Ec1-LoPE was well tolerated without signs of hepatic or kidney toxicity. Co-treatment with trastuzumab and Ec1-LoPE might be a potential therapeutic strategy for HER2- and EpCAM-positive OC.
Collapse
Affiliation(s)
- Tianqi Xu
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.X.); (O.V.)
| | - Anzhelika Vorobyeva
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.X.); (O.V.)
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634 050 Tomsk, Russia; (A.S.); (A.O.); (S.M.D.)
| | - Alexey Schulga
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634 050 Tomsk, Russia; (A.S.); (A.O.); (S.M.D.)
- Molecular Immunology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Elena Konovalova
- Molecular Immunology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Olga Vorontsova
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.X.); (O.V.)
| | - Haozhong Ding
- Department of Protein Science, KTH Royal Institute of Technology, Roslagstullsbacken 21, 114 17 Stockholm, Sweden; (H.D.); (T.G.)
| | - Torbjörn Gräslund
- Department of Protein Science, KTH Royal Institute of Technology, Roslagstullsbacken 21, 114 17 Stockholm, Sweden; (H.D.); (T.G.)
| | - Liubov A. Tashireva
- Cancer Research Institute, Tomsk National Research Medical Center Russian Academy of Sciences, 634009 Tomsk, Russia;
| | - Anna Orlova
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634 050 Tomsk, Russia; (A.S.); (A.O.); (S.M.D.)
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, 751 23 Uppsala, Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.X.); (O.V.)
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634 050 Tomsk, Russia; (A.S.); (A.O.); (S.M.D.)
| | - Sergey M. Deyev
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634 050 Tomsk, Russia; (A.S.); (A.O.); (S.M.D.)
- Molecular Immunology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
- Bio-Nanophotonic Lab, Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University ‘MEPhI’, 115409 Moscow, Russia
- Center of Biomedical Engineering, Sechenov University, 119991 Moscow, Russia
| |
Collapse
|
7
|
Xiang Z, Jiang G, Fan D, Tian J, Hu Z, Fang Q. Drug-internalized bacterial swimmers for magnetically manipulable tumor-targeted drug delivery. NANOSCALE 2020; 12:13513-13522. [PMID: 32555818 DOI: 10.1039/d0nr01892a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tumor-targeted drug carriers are becoming attractive for precise drug delivery in anti-tumor therapy. However, a lot of the reported drug delivery systems are complicatedly designed and their destiny in vivo is beyond our control, which limited their clinical applications. Hence, it is urgently needed to develop spatio-manipulable self-propelled nanosystems for drug delivery in a facile way. Here, we have successfully constructed drug-internalized bacterial swimmers, whose movement can be manually controlled by an external magnetic field (MF). We demonstrate that the swimmers maintain the mobility to align and swim along MF lines. Further studies reveal that the doxorubicin (DOX-) internalized bacterial swimmers are able to navigate toward tumor sites under the guidance of MF, rendering enhanced anti-tumor efficacy compared with that of dead ones and free DOX. Therefore, the MF-guided bacterial swimmers hold great promise for spatio-manipulable drug delivery in precision medicine.
Collapse
Affiliation(s)
- Zhichu Xiang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China. and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Gexuan Jiang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China. and Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Di Fan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China. and Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiesheng Tian
- State Key Laboratories for Agro-biotechnology and College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhiyuan Hu
- University of Chinese Academy of Sciences, Beijing 100049, China and Sino-Danish Center for Education and Research, Beijing 101408, China
| | - Qiaojun Fang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China. and Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China and Sino-Danish Center for Education and Research, Beijing 101408, China and Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology, Beijing 100190, China
| |
Collapse
|
8
|
Spaczyńska E, Mrozek-Wilczkiewicz A, Malarz K, Kos J, Gonec T, Oravec M, Gawecki R, Bak A, Dohanosova J, Kapustikova I, Liptaj T, Jampilek J, Musiol R. Design and synthesis of anticancer 1-hydroxynaphthalene-2-carboxanilides with a p53 independent mechanism of action. Sci Rep 2019; 9:6387. [PMID: 31011161 PMCID: PMC6476888 DOI: 10.1038/s41598-019-42595-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 04/03/2019] [Indexed: 12/19/2022] Open
Abstract
A series of 116 small-molecule 1-hydroxynaphthalene-2-carboxanilides was designed based on the fragment-based approach and was synthesized according to the microwave-assisted protocol. The biological activity of all of the compounds was tested on human colon carcinoma cell lines including a deleted TP53 tumor suppressor gene. The mechanism of activity was studied according to the p53 status in the cell. Several compounds revealed a good to excellent activity that was similar to or better than the standard anticancer drugs. Some of these appeared to be more active against the p53 null cells than their wild-type counterparts. Intercalating the properties of these compounds could be responsible for their mechanism of action.
Collapse
Affiliation(s)
- Ewelina Spaczyńska
- Institute of Chemistry, University of Silesia, 75 Pułku Piechoty 1a, 41-500, Chorzów, Poland
| | - Anna Mrozek-Wilczkiewicz
- A. Chełkowski Institute of Physics and Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pułku Piechoty 1a, 41-500, Chorzów, Poland
| | - Katarzyna Malarz
- A. Chełkowski Institute of Physics and Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pułku Piechoty 1a, 41-500, Chorzów, Poland
| | - Jiri Kos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojarov 10, 832 32, Bratislava, Slovakia
| | - Tomas Gonec
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1, Brno, 612 42, Czech Republic
| | - Michal Oravec
- Global Change Research Institute CAS, Belidla 986/4a, Brno, 603 00, Czech Republic
| | - Robert Gawecki
- A. Chełkowski Institute of Physics and Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pułku Piechoty 1a, 41-500, Chorzów, Poland
| | - Andrzej Bak
- Institute of Chemistry, University of Silesia, 75 Pułku Piechoty 1a, 41-500, Chorzów, Poland
| | - Jana Dohanosova
- Central Laboratories, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9, Bratislava, 81237, Slovakia
| | - Iva Kapustikova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojarov 10, 832 32, Bratislava, Slovakia
| | - Tibor Liptaj
- Central Laboratories, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9, Bratislava, 81237, Slovakia
| | - Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15, Bratislava, Slovakia. .,Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic.
| | - Robert Musiol
- Institute of Chemistry, University of Silesia, 75 Pułku Piechoty 1a, 41-500, Chorzów, Poland.
| |
Collapse
|
9
|
Endo Y, Takeda K, Mohan N, Shen Y, Jiang J, Rotstein D, Wu WJ. Payload of T-DM1 binds to cell surface cytoskeleton-associated protein 5 to mediate cytotoxicity of hepatocytes. Oncotarget 2018; 9:37200-37215. [PMID: 30647854 PMCID: PMC6324681 DOI: 10.18632/oncotarget.26461] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/26/2018] [Indexed: 12/29/2022] Open
Abstract
Off-target toxicity is a major cause of dose-limiting toxicity for antibody-drug conjugates (ADCs), mechanisms of which remain poorly understood. Here, we demonstrate that cytoskeleton-associated protein 5 (CKAP5) serves as a cell surface target for T-DM1 and that binding of T-DM1 to CKAP5 is mediated by payload (DM1). This study introduces a novel molecular mechanism of ADC payload-mediated interaction with cell surface molecules to induce cytotoxicity. Upon binding to CKAP5, T-DM1 causes cell membrane damage and leads to calcium influx into the cells, resulting in disorganized microtubule network and apoptosis. While binding of T-DM1 with HER2 is critical for killing HER2-positive tumor cells, our data suggest that cytotoxicity induced by T-DM1 interaction with CKAP5 may preferentially damage normal cells/tissues where HER2 expression is low or missing to cause off-target toxicity. This study provides molecular basis of ADC-induced off-target cytotoxicity and opens a new avenue for developing next generation of ADCs.
Collapse
Affiliation(s)
- Yukinori Endo
- Division of Biotechnology Review and Research I, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Kazuyo Takeda
- Microscopy and Imaging Core Facility, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Nishant Mohan
- Division of Biotechnology Review and Research I, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Yi Shen
- Division of Biotechnology Review and Research I, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Jiangsong Jiang
- Division of Biotechnology Review and Research I, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - David Rotstein
- Division of Compliance, Office of Surveillance and Compliance, Center for Veterinary Medicine, U.S. Food and Drug Administration (FDA), Derwood, MD, USA
| | - Wen Jin Wu
- Division of Biotechnology Review and Research I, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration (FDA), Silver Spring, MD, USA
| |
Collapse
|
10
|
Lippi G, Favaloro EJ. Emicizumab (ACE910): Clinical background and laboratory assessment of hemophilia A. Adv Clin Chem 2018; 88:151-167. [PMID: 30612605 DOI: 10.1016/bs.acc.2018.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Congenital hemophilia A, a relatively common and sometimes life-threatening bleeding disorder, is caused by inherited deficiency of clotting factor (F) VIII. The adoption of an appropriate medical and environmental prophylaxis is critical for long-term management of hemophilia because it will considerably reduce the number of both mild and severe bleeding episodes. Among the many therapeutic options that have become available over the past decades, ACE910 (also known as emicizumab) is a bispecific immunoglobulin G antibody characterized by its unique ability to bind FIX or FIXa on one arm and FX on the other, thus abrogating FVIII activity in vivo. Several phase I to III clinical trials have now been published, confirming the clinical efficacy and relative safety of this new agent for long-term prophylaxis of hemophilia A, especially those patients having FVIII inhibitors. The recent regulatory clearance of ACE910 in many countries will hence impose additional challenges to clinical laboratories because the panel of available tests will need to address the emerging issue of monitoring patients treated with this novel anti-hemophilic agent by using conventional as well as innovative approaches. Therefore, this article is aimed to provide an update on clinical background and challenges of laboratory assessment in hemophilia A patients undergoing ACE910 administration.
Collapse
Affiliation(s)
- Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, Verona, Italy.
| | - Emmanuel J Favaloro
- Department of Haematology, Sydney Centres fosr Thrombosis and Haemostasis, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW, Australia
| |
Collapse
|
11
|
Tian H, He Y, Song X, Jiang L, Luo J, Xu Y, Zhang W, Gao X, Yao W. Nitrated T helper cell epitopes enhance the immunogenicity of HER2 vaccine and induce anti-tumor immunity. Cancer Lett 2018; 430:79-87. [DOI: 10.1016/j.canlet.2018.05.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/06/2018] [Accepted: 05/15/2018] [Indexed: 01/27/2023]
|
12
|
Dainis AM, Ashley EA. Cardiovascular Precision Medicine in the Genomics Era. JACC Basic Transl Sci 2018; 3:313-326. [PMID: 30062216 PMCID: PMC6059349 DOI: 10.1016/j.jacbts.2018.01.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/31/2017] [Accepted: 01/02/2018] [Indexed: 12/20/2022]
Abstract
Precision medicine strives to delineate disease using multiple data sources-from genomics to digital health metrics-in order to be more precise and accurate in our diagnoses, definitions, and treatments of disease subtypes. By defining disease at a deeper level, we can treat patients based on an understanding of the molecular underpinnings of their presentations, rather than grouping patients into broad categories with one-size-fits-all treatments. In this review, the authors examine how precision medicine, specifically that surrounding genetic testing and genetic therapeutics, has begun to make strides in both common and rare cardiovascular diseases in the clinic and the laboratory, and how these advances are beginning to enable us to more effectively define risk, diagnose disease, and deliver therapeutics for each individual patient.
Collapse
Key Words
- CAD, coronary artery disease
- CF, cystic fibrosis
- CHD, coronary heart disease
- CML, chronic myelogenous leukemia
- CRS, conventional risk score
- CVD, cardiovascular disease
- CaM, calmodulin
- DCM, dilated cardiomyopathy
- DMD, Duchenne muscular dystrophy
- FH, familial hypercholesterolemia
- GRS, genomic risk score
- HCM, hypertrophic cardiomyopathy
- HDR, homology directed repair
- IVF, in vitro fertilization
- LDL-C, low-density lipoprotein cholesterol
- LQTS, long QT syndrome
- NGS, next-generation sequencing
- PGD, preimplantation genetic diagnosis
- SNP, single nucleotide polymorphism
- genome sequencing
- genomics
- iPSC, induced pluripotent stem cells
- precision medicine
- ssODN, single-stranded oligodeoxynucleotide
- targeted therapeutics
Collapse
Affiliation(s)
| | - Euan A. Ashley
- Department of Genetics, Stanford University, Stanford, California
- Department of Medicine, Stanford University, Stanford, California
- Stanford Center for Inherited Cardiovascular Disease, Stanford University, Stanford, California
| |
Collapse
|
13
|
Type IIB DNA topoisomerase is downregulated by trastuzumab and doxorubicin to synergize cardiotoxicity. Oncotarget 2017; 9:6095-6108. [PMID: 29464058 PMCID: PMC5814198 DOI: 10.18632/oncotarget.23543] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/05/2017] [Indexed: 12/15/2022] Open
Abstract
Despite heightened risk of cardiotoxicity associated with combination therapy of anthracyclines and trastuzumab in HER2-positive breast cancer patients, little research effort has been invested in exploring the molecular mechanisms of cardiotoxicity induced by this combination therapy. In this study, we demonstrate that trastuzumab downregulates both gene and protein expressions of type IIB DNA topoisomerase/DNA topoisomerase IIB (TOP2B), a major intracellular target mediating doxorubicin-induced cardiotoxicity, in human primary cardiomyocytes. This in turn induces DNA damage activity and DNA double strand breaks, which is indicated by the enhanced phosphorylation of H2AX (γH2AX) and ataxia telangiectasia and Rad3-related protein (ATR pS428) in trastuzumab-treated cardiomyocytes. Furthermore, concurrent or sequential treatment of doxorubicin and trastuzumab significantly increases the downregulation of the protein levels of TOP2B, enhances apoptosis and cell growth inhibition, and promotes production of reactive oxidative and nitrative species in human cardiomyocytes as compared to either trastuzumab or doxorubicin treatment, indicating augmentation of cardiotoxicity in combination therapy. Additionally, our data reveal that doxorubicin treatment increases the levels of ErbB2/HER2 expression in human cardiomyocytes as compared with that in cells not treated with doxorubicin, leading to the enhanced activity downstream of HER2 signaling. Consequently, this may render the cardiomyocytes to become addicted to HER2 signaling for survival under stressed conditions. Enhanced HER2 protein expression leaves cardiomyocytes more sensitive to trastuzumab treatment after doxorubicin exposure. This study provides molecular basis for significantly increased cardiotoxicity in cancer patients who are treated with anthracyclines and trastuzumab-based combination regimens.
Collapse
|
14
|
Dokmanovic M, King KE, Mohan N, Endo Y, Wu WJ. Cardiotoxicity of ErbB2-targeted therapies and its impact on drug development, a spotlight on trastuzumab. Expert Opin Drug Metab Toxicol 2017; 13:755-766. [PMID: 28571477 DOI: 10.1080/17425255.2017.1337746] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Trastuzumab, a therapeutic monoclonal antibody directed against ErbB2, is often noted as a successful example of targeted therapy. Trastuzumab improved outcomes for many patients with ErbB2-positive breast and gastric cancers, however, cardiac side effects [e.g., left ventricular dysfunction and congestive heart failure (CHF)] were reported in the early phase clinical studies. This finding, subsequently corroborated by multiple clinical studies, raised concerns that the observed cardiotoxicity induced by trastuzumab might adversely impact the clinical development of other therapeutics targeting ErbB family members. Areas covered: In this review we summarize both basic research and clinical findings regarding trastuzumab-induced cardiotoxicity and assess if there has been an impact of trastuzumab-induced cardiotoxicity on the development of other agents targeting ErbB family members. Expert opinion: There are a number of scientific gaps that are critically important to address for the continued success of HER2-targeted agents. These include: 1) elucidating the molecular mechanisms contributing to cardiotoxicity; 2) developing relevant preclinical testing systems for predicting cardiotoxicity; 3) developing clinical strategies to identify patients at risk of cardiotoxicity; and 4) enhancing management of clinical symptoms of cardiotoxicity.
Collapse
Affiliation(s)
- Milos Dokmanovic
- a Division of Biotechnology Review and Research I, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research , U.S. Food and Drug Administration , Silver Spring , MD 20993 , USA
| | - Kathryn E King
- a Division of Biotechnology Review and Research I, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research , U.S. Food and Drug Administration , Silver Spring , MD 20993 , USA
| | - Nishant Mohan
- a Division of Biotechnology Review and Research I, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research , U.S. Food and Drug Administration , Silver Spring , MD 20993 , USA
| | - Yukinori Endo
- a Division of Biotechnology Review and Research I, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research , U.S. Food and Drug Administration , Silver Spring , MD 20993 , USA
| | - Wen Jin Wu
- a Division of Biotechnology Review and Research I, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research , U.S. Food and Drug Administration , Silver Spring , MD 20993 , USA
| |
Collapse
|