1
|
Fu L, Zhao Z, Zhao S, Zhang M, Teng X, Wang L, Yang T. The involvement of aquaporin 5 in the inflammatory response of primary Sjogren's syndrome dry eye: potential therapeutic targets exploration. Front Med (Lausanne) 2024; 11:1439888. [PMID: 39376655 PMCID: PMC11456562 DOI: 10.3389/fmed.2024.1439888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Abstract
Sjogren's syndrome (SS) is a chronic autoimmune disease. Mainly due to the infiltration of lymphoplasmic cells into the exocrine glands, especially the salivary glands and lacrimal glands, resulting in reduced tear and saliva secretion. Reduced tear flow can trigger Sjogren's syndrome dry eye (SSDE). Although the pathophysiology of SSDE xerosis remains incompletely understood, recent advances have identified aquaporin-5 (AQP5) as a critical factor in dysregulation of the exocrine gland and epithelium, influencing the clinical presentation of SSDE through modulation of inflammatory microenvironment and tear secretion processes. This review aims to explore AQP5 regulatory mechanisms in SSDE and analyze its potential as a therapeutic target, providing new directions for SSDE treatment.
Collapse
Affiliation(s)
- Lijuan Fu
- School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
- Ophthalmology Department, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zihang Zhao
- Ophthalmology Department, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuang Zhao
- School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
- Ophthalmology Department, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Meiying Zhang
- School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaoming Teng
- School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
- Ophthalmology Department, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Liyuan Wang
- School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
- Ophthalmology Department, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tiansong Yang
- School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
2
|
Liang Y, Chen P, Wang S, Cai L, Zhu F, Jiang Y, Li L, Zhu L, Heng Y, Zhang W, Pan Y, Wei W, Jia L. SCF FBXW5-mediated degradation of AQP3 suppresses autophagic cell death through the PDPK1-AKT-MTOR axis in hepatocellular carcinoma cells. Autophagy 2024; 20:1984-1999. [PMID: 38726865 PMCID: PMC11346525 DOI: 10.1080/15548627.2024.2353497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/22/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024] Open
Abstract
AQP3 (aquaporin 3 (Gill blood group)), a member of the AQP family, is an aquaglyceroporin which transports water, glycerol and small solutes across the plasma membrane. Beyond its role in fluid transport, AQP3 plays a significant role in regulating various aspects of tumor cell behavior, including cell proliferation, migration, and invasion. Nevertheless, the underlying regulatory mechanism of AQP3 in tumors remains unclear. Here, for the first time, we report that AQP3 is a direct target for ubiquitination by the SCFFBXW5 complex. In addition, we revealed that downregulation of FBXW5 significantly induced AQP3 expression to prompt macroautophagic/autophagic cell death in hepatocellular carcinoma (HCC) cells. Mechanistically, AQP3 accumulation induced by FBXW5 knockdown led to the degradation of PDPK1/PDK1 in a lysosomal-dependent manner, thus inactivating the AKT-MTOR pathway and inducing autophagic death in HCC. Taken together, our findings revealed a previously undiscovered regulatory mechanism through which FBXW5 degraded AQP3 to suppress autophagic cell death via the PDPK1-AKT-MTOR axis in HCC cells.Abbreviation: BafA1: bafilomycin A1; CQ: chloroquine; CRL: CUL-Ring E3 ubiquitin ligases; FBXW5: F-box and WD repeat domain containing 5; HCC: hepatocellular carcinoma; HSPA8/HSC70: heat shock protein family A (Hsp70) member 8; 3-MA: 3-methyladenine; PDPK1/PDK1: 3-phosphoinositide dependent protein kinase 1; RBX1/ROC1: ring-box 1; SKP1: S-phase kinase associated protein 1; SCF: SKP1-CUL1-F-box protein.
Collapse
Affiliation(s)
- Yupei Liang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Chen
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shiwen Wang
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Lili Cai
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Zhu
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Yanyu Jiang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihui Li
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihua Zhu
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongqing Heng
- Department of Integrative Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Wenjuan Zhang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yongfu Pan
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Lan Q, Li J, Zhang H, Zhou Z, Fang Y, Yang B. Mechanistic complement of autosomal dominant polycystic kidney disease: the role of aquaporins. J Mol Med (Berl) 2024; 102:773-785. [PMID: 38668786 DOI: 10.1007/s00109-024-02446-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 05/21/2024]
Abstract
Autosomal dominant polycystic kidney disease is a genetic kidney disease caused by mutations in the genes PKD1 or PKD2. Its course is characterized by the formation of progressively enlarged cysts in the renal tubules bilaterally. The basic genetic explanation for autosomal dominant polycystic kidney disease is the double-hit theory, and many of its mechanistic issues can be explained by the cilia doctrine. However, the precise molecular mechanisms underpinning this condition's occurrence are still not completely understood. Experimental evidence suggests that aquaporins, a class of transmembrane channel proteins, including aquaporin-1, aquaporin-2, aquaporin-3, and aquaporin-11, are involved in the mechanism of autosomal dominant polycystic kidney disease. Aquaporins are either a potential new target for the treatment of autosomal dominant polycystic kidney disease, and further study into the physiopathological role of aquaporins in autosomal dominant polycystic kidney disease will assist to clarify the disease's pathophysiology and increase the pool of potential treatment options. We primarily cover pertinent findings on aquaporins in autosomal dominant polycystic kidney disease in this review.
Collapse
Affiliation(s)
- Qiumei Lan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Jie Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Hanqing Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Zijun Zhou
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Yaxuan Fang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Bo Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
- Department of Nephrology, The First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, No.88, Changling Road, Xiqing District, Tianjin, 300193, China.
| |
Collapse
|
4
|
Physiological Cooperation between Aquaporin 5 and TRPV4. Int J Mol Sci 2022; 23:ijms231911634. [PMID: 36232935 PMCID: PMC9570067 DOI: 10.3390/ijms231911634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Aquaporins—among them, AQP5—are responsible for transporting water across biological membranes, which is an important process in all living organisms. The transient receptor potential channel 4 (TRPV4) is a cation channel that is mostly calcium-permeable and can also be activated by osmotic stimuli. It plays a role in a number of different functions in the body, e.g., the development of bones and cartilage, and it is involved in the body’s osmoregulation, the generation of certain types of sensation (pain), and apoptosis. Our earlier studies on the uterus and the literature data aroused our interest in the physiological role of the cooperation of AQP5 and TRPV4. In this review, we focus on the co-expression and cooperation of AQP5 and TRPV4 in the lung, salivary glands, uterus, adipose tissues, and lens. Understanding the cooperation between AQP5 and TRPV4 may contribute to the development of new drug candidates and the therapy of several disorders (e.g., preterm birth, cataract, ischemia/reperfusion-induced edema, exercise- or cold-induced asthma).
Collapse
|
5
|
Critical Role of Aquaporins in Cancer: Focus on Hematological Malignancies. Cancers (Basel) 2022; 14:cancers14174182. [PMID: 36077720 PMCID: PMC9455074 DOI: 10.3390/cancers14174182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Aquaporins are proteins able to regulate the transfer of water and other small substances such as ions, glycerol, urea, and hydrogen peroxide across cellular membranes. AQPs provide for a huge variety of physiological phenomena; their alteration provokes several types of pathologies including cancer and hematological malignancies. Our review presents data revealing the possibility of employing aquaporins as biomarkers in patients with hematological malignancies and evaluates the possibility that interfering with the expression of aquaporins could represent an effective treatment for hematological malignancies. Abstract Aquaporins are transmembrane molecules regulating the transfer of water and other compounds such as ions, glycerol, urea, and hydrogen peroxide. Their alteration has been reported in several conditions such as cancer. Tumor progression might be enhanced by aquaporins in modifying tumor angiogenesis, cell volume adaptation, proteases activity, cell–matrix adhesions, actin cytoskeleton, epithelial–mesenchymal transitions, and acting on several signaling pathways facilitating cancer progression. Close connections have also been identified between the aquaporins and hematological malignancies. However, it is difficult to identify a unique action exerted by aquaporins in different hemopathies, and each aquaporin has specific effects that vary according to the class of aquaporin examined and to the different neoplastic cells. However, the expression of aquaporins is altered in cell cultures and in patients with acute and chronic myeloid leukemia, in lymphoproliferative diseases and in multiple myeloma, and the different expression of aquaporins seems to be able to influence the efficacy of treatment and could have a prognostic significance, as greater expression of aquaporins is correlated to improved overall survival in leukemia patients. Finally, we assessed the possibility that modifying the aquaporin expression using aquaporin-targeting regulators, specific monoclonal antibodies, and even aquaporin gene transfer could represent an effective therapy of hematological malignancies.
Collapse
|
6
|
Ionescu S, Nicolescu AC, Marincas M, Madge OL, Simion L. An Update on the General Features of Breast Cancer in Male Patients-A Literature Review. Diagnostics (Basel) 2022; 12:1554. [PMID: 35885460 PMCID: PMC9323942 DOI: 10.3390/diagnostics12071554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/19/2022] [Accepted: 06/24/2022] [Indexed: 11/28/2022] Open
Abstract
Male breast cancers are uncommon, as men account for less than 1 percent of all breast carcinomas. Among the predisposing risk factors for male breast cancer, the following appear to be significant: (a) breast/chest radiation exposure, (b) estrogen use, diseases associated with hyper-estrogenism, such as cirrhosis or Klinefelter syndrome, and (c) family health history. Furthermore, there are clear familial tendencies, with a higher incidence among men who have a large number of female relatives with breast cancer and (d) major inheritance susceptibility. Moreover, in families with BRCA mutations, there is an increased risk of male breast cancer, although the risk appears to be greater with inherited BRCA2 mutations than with inherited BRCA1 mutations. Due to diagnostic delays, male breast cancer is more likely to present at an advanced stage. A core biopsy or a fine needle aspiration must be performed to confirm suspicious findings. Infiltrating ductal cancer is the most prevalent form of male breast cancer, while invasive lobular carcinoma is extremely uncommon. Male breast cancer is almost always positive for hormone receptors. A worse prognosis is associated with a more advanced stage at diagnosis for men with breast cancer. Randomized controlled trials which recruit both female and male patients should be developed in order to gain more consistent data on the optimal clinical approach.
Collapse
Affiliation(s)
- Sinziana Ionescu
- 1st Clinic of General Surgery and Surgical Oncology, Bucharest Oncology Institute, 022328 Bucharest, Romania; (S.I.); (L.S.)
- Department of Surgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | | | - Marian Marincas
- 1st Clinic of General Surgery and Surgical Oncology, Bucharest Oncology Institute, 022328 Bucharest, Romania; (S.I.); (L.S.)
- Department of Surgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Octavia-Luciana Madge
- 1st Clinic of General Surgery and Surgical Oncology, Bucharest Oncology Institute, 022328 Bucharest, Romania; (S.I.); (L.S.)
- Faculty of Letters, University of Bucharest, 050663 Bucharest, Romania
| | - Laurentiu Simion
- 1st Clinic of General Surgery and Surgical Oncology, Bucharest Oncology Institute, 022328 Bucharest, Romania; (S.I.); (L.S.)
- Department of Surgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
7
|
Li M, He M, Xu F, Guan Y, Tian J, Wan Z, Zhou H, Gao M, Chong T. Abnormal expression and the significant prognostic value of aquaporins in clear cell renal cell carcinoma. PLoS One 2022; 17:e0264553. [PMID: 35245343 PMCID: PMC8896691 DOI: 10.1371/journal.pone.0264553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/12/2022] [Indexed: 12/11/2022] Open
Abstract
Aquaporins (AQPs) are a kind of transmembrane proteins that exist in various organs of the human body. AQPs play an important role in regulating water transport, lipid metabolism and glycolysis of cells. Clear cell renal cell carcinoma (ccRCC) is a common malignant tumor of the kidney, and the prognosis is worse than other types of renal cell cancer (RCC). The impact of AQPs on the prognosis of ccRCC and the potential relationship between AQPs and the occurrence and development of ccRCC are demanded to be investigated. In this study, we first explored the expression pattern of AQPs by using Oncomine, UALCAN, and HPA databases. Secondly, we constructed protein-protein interaction (PPI) network and performed function enrichment analysis through STRING, GeneMANIA, and Metascape. Then a comprehensive analysis of the genetic mutant frequency of AQPs in ccRCC was carried out using the cBioPortal database. In addition, we also analyzed the main enriched biological functions of AQPs and the correlation with seven main immune cells. Finally, we confirmed the prognostic value of AQPs throughGEPIA and Cox regression analysis. We found that the mRNA expression levels of AQP0/8/9/10 were up-regulated in patients with ccRCC, while those of AQP1/2/3/4/5/6/7/11 showed the opposite. Among them, the expression differences of AQP1/2/3/4/5/6/7/8/9/11 were statistically significant. The differences in protein expression levels of AQP1/2/3/4/5/6 in ccRCC and normal renal tissues were consistent with the change trends of mRNA. The biological functions of AQPs were mainly concentrated in water transport, homeostasis maintenance, glycerol transport, and intracellular movement of sugar transporters. The high mRNA expression levels of AQP0/8/9 were significantly correlated with worse overall survival (OS), while those of AQP1/4/7 were correlated with better OS. AQP0/1/4/9 were prognostic-related factors, and AQP1/9 were independent prognostic factors. In general, this research has investigated the values of AQPs in ccRCC, which could become new survival markers for ccRCC targeted therapy.
Collapse
Affiliation(s)
- Mingrui Li
- Department of Urology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Minxin He
- Department of Urology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Fangshi Xu
- Department of Urology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Yibing Guan
- Department of Urology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Juanhua Tian
- Department of Urology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Ziyan Wan
- Department of Urology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Haibin Zhou
- Department of Urology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Mei Gao
- Department of Urology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Tie Chong
- Department of Urology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
- * E-mail:
| |
Collapse
|