1
|
Mao SJ, Chen QQ, Dai YL, Dong GP, Zou CC. The diagnosis and management of mucopolysaccharidosis type II. Ital J Pediatr 2024; 50:207. [PMID: 39380047 PMCID: PMC11463001 DOI: 10.1186/s13052-024-01769-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 09/22/2024] [Indexed: 10/10/2024] Open
Abstract
Mucopolysaccharidosis type II (MPS II) is a rare X-linked recessive inherited lysosomal storage disease. With pathogenic variants of the IDS gene, the activity of iduronate-2-sulfatase (IDS) is reduced or lost, causing the inability to degrade glycosaminoglycans (GAGs) in cells and influencing cell function, eventually resulting in multisystemic manifestations, such as a coarse face, dysostosis multiplex, recurrent respiratory tract infections, and hernias. Diagnosing MPS II requires a combination of clinical manifestations, imaging examinations, urinary GAGs screening, enzyme activity, and genetic testing. Currently, symptomatic treatment is the main therapeutic approach. Owing to economic and drug availability issues, only a minority of patients opt for enzyme replacement therapy or hematopoietic stem cell transplantation. The limited awareness of the disease, the lack of widespread detection technology, and uneven economic development contribute to the high rates of misdiagnosis and missed diagnosis in China.
Collapse
Affiliation(s)
- Shao-Jia Mao
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qing-Qing Chen
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yang-Li Dai
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Guan-Ping Dong
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chao-Chun Zou
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Papadopoulou CI, Sifakakis I, Tournis S. Metabolic Bone Diseases Affecting Tooth Eruption: A Narrative Review. CHILDREN (BASEL, SWITZERLAND) 2024; 11:748. [PMID: 38929327 PMCID: PMC11202066 DOI: 10.3390/children11060748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Tooth eruption is an essential process for the development of the oral and maxillofacial system. Several inherited and acquired diseases might affect this tightly regulated process, resulting in premature, delayed, or even failed tooth eruption. The purpose of this article is to review the literature and the clinical parameters of metabolic bone diseases that affect tooth eruption. It examines the physiological aspects of tooth eruption and the pathophysiological changes induced by metabolic bone diseases, including changes in bone metabolism, density, and structure. The search strategy for this review included an electronic search in PubMed, Google Scholar, Medline, Scopus, and the Cochrane Library using the following keywords: "metabolic bone diseases", "tooth eruption", "delayed tooth eruption", and each reported disease in combination with "tooth eruption disorders", covering publications up to March 2024 and limited to English-language sources. Understanding the influence of metabolic bone diseases on tooth eruption is crucial for managing both dental and skeletal manifestations associated with these disorders. This review suggests that a multidisciplinary approach to treatment may significantly improve oral outcomes for patients suffering from such conditions. Clinicians should be aware of the specific dental abnormalities that may arise and consider comprehensive evaluations and individualized treatment plans. These findings underscore the need for further research into targeted therapies that address these abnormalities.
Collapse
Affiliation(s)
| | - Iosif Sifakakis
- Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Symeon Tournis
- Laboratory for the Research of Musculoskeletal System “Th. Garofalidis”, School of Medicine, National and Kapodistrian University of Athens, 14561 Athens, Greece;
| |
Collapse
|
3
|
Tavares AMV, Gonzalez EA, Viana IS, Visioli F, Vera LNP, Baldo G. Characterization of heart disease in mucopolysaccharidosis type II mice. Cardiovasc Pathol 2023; 67:107575. [PMID: 37730078 DOI: 10.1016/j.carpath.2023.107575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 08/26/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023] Open
Abstract
Mucopolysaccharidosis type II (MPSII) is a progressive lysosomal storage disease caused by mutations in the IDS gene, that leads to iduronate 2-sulfatase (IDS) enzyme deficiency. The enzyme catalyzes the first step of degradation of two glycosaminoglycans (GAGs), heparan sulfate (HS) and dermatan sulfate (DS). The consequences of MPSII are progressively harmful and can lead to death by cardiac failure. The aim of this study was to characterize the cardiovascular disease in MPSII mice. Thus, we evaluated the cardiovascular function of MPSII male mice at 6, 8, and 10 months of age, through functional, histological, and biochemical analyzes. Echocardiographic analyses showed a progressive loss in cardiac function, observed through parameters such as reduction in ejection fraction (46% in control versus 28% in MPS II at 10 months, P < .01) and fractional area change (31% versus 23%, P < .05). Similar results were found in parameters of vascular competence, obtained by echo Doppler. Both aortic dilatation and an increase in pulmonary resistance were observed at all time points in MPSII mice. The histological analyses showed an increase in the thickness of the heart valves (2-fold thicker than control values at 10 months). Biochemical analyzes confirmed GAG storage in these tissues, with a massive elevation of DS in the myocardium. Furthermore, an important increase in the activity of proteases such as cathepsin S and B (up to 5-fold control values) was found and could be related to the progressive loss of cardiac function observed in MPSII mice. In this work, we demonstrated that loss of cardiac function in MPSII mice started at 6 months of age, although its global cardiac capacity was still preserved at this time. Disease progressed at later time points leading to heart failure. The MPSII mice at later times reproduce many of the cardiovascular events found in patients with Hunter's disease.
Collapse
Affiliation(s)
- Angela Maria Vicente Tavares
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia - UFRGS, Rua Ramiro Barcelos, 2600, Porto Alegre, CEP: 90035-003, RS, Brazil
| | - Esteban Alberto Gonzalez
- Centro de Pesquisa Experimental- Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, CEP 90035-903, RS, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular - UFRGS Av. Bento Gonçalves, 9500, Porto Alegre, CEP 91501970, RS, Brazil
| | - Isabelle Souza Viana
- Centro de Pesquisa Experimental- Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, CEP 90035-903, RS, Brazil
| | - Fernanda Visioli
- Centro de Pesquisa Experimental- Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, CEP 90035-903, RS, Brazil
| | - Luisa Natalia Pimentel Vera
- Centro de Pesquisa Experimental- Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, CEP 90035-903, RS, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular - UFRGS Av. Bento Gonçalves, 9500, Porto Alegre, CEP 91501970, RS, Brazil
| | - Guilherme Baldo
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia - UFRGS, Rua Ramiro Barcelos, 2600, Porto Alegre, CEP: 90035-003, RS, Brazil; Centro de Pesquisa Experimental- Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, CEP 90035-903, RS, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular - UFRGS Av. Bento Gonçalves, 9500, Porto Alegre, CEP 91501970, RS, Brazil.
| |
Collapse
|
4
|
Żuber Z, Kieć-Wilk B, Kałużny Ł, Wierzba J, Tylki-Szymańska A. Diagnosis and Management of Mucopolysaccharidosis Type II (Hunter Syndrome) in Poland. Biomedicines 2023; 11:1668. [PMID: 37371763 PMCID: PMC10296388 DOI: 10.3390/biomedicines11061668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/12/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Mucopolysaccharidosis type II (MPS II; also known as Hunter syndrome) is a rare, inherited lysosomal storage disease. The disease is caused by deficiency of the lysosomal enzyme iduronate-2-sulphatase (I2S) due to mutations in the IDS gene, which leads to accumulation of glycosaminoglycans (GAGs). Deficiency of I2S enzyme activity in patients with MPS II leads to progressive lysosomal storage of GAGs in the liver, spleen, heart, bones, joints, and respiratory tract. This process disturbs cellular functioning and leads to multisystemic disease manifestations. Symptoms and their time of onset differ among patients. Diagnosis of MPS II involves assessment of clinical features, biochemical parameters, and molecular characteristics. Life-long enzyme replacement therapy with idursulfase (recombinant human I2S) is the current standard of care. However, an interdisciplinary team of specialists is required to monitor and assess the patient's condition to ensure optimal care. An increasing number of patients with this rare disease reach adulthood and old age. The transition from pediatric care to the adult healthcare system should be planned and carried out according to guidelines to ensure maximum benefit for the patient.
Collapse
Affiliation(s)
- Zbigniew Żuber
- Department of Pediatrics, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, 30-705 Krakow, Poland
| | - Beata Kieć-Wilk
- Unit of Rare Metabolic Diseases, Department of Metabolic Diseases, Jagiellonian University Medical College, 31-008 Krakow, Poland
| | - Łukasz Kałużny
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Jolanta Wierzba
- Department of Pediatrics, Hematology and Oncology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Anna Tylki-Szymańska
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland
| |
Collapse
|
5
|
Mucopolysaccharidoses: Cellular Consequences of Glycosaminoglycans Accumulation and Potential Targets. Int J Mol Sci 2022; 24:ijms24010477. [PMID: 36613919 PMCID: PMC9820209 DOI: 10.3390/ijms24010477] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/09/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022] Open
Abstract
Mucopolysaccharidoses (MPSs) constitute a heterogeneous group of lysosomal storage disorders characterized by the lysosomal accumulation of glycosaminoglycans (GAGs). Although lysosomal dysfunction is mainly affected, several cellular organelles such as mitochondria, endoplasmic reticulum, Golgi apparatus, and their related process are also impaired, leading to the activation of pathophysiological cascades. While supplying missing enzymes is the mainstream for the treatment of MPS, including enzyme replacement therapy (ERT), hematopoietic stem cell transplantation (HSCT), or gene therapy (GT), the use of modulators available to restore affected organelles for recovering cell homeostasis may be a simultaneous approach. This review summarizes the current knowledge about the cellular consequences of the lysosomal GAGs accumulation and discusses the use of potential modulators that can reestablish normal cell function beyond ERT-, HSCT-, or GT-based alternatives.
Collapse
|
6
|
Kumar P, Das PC, Das A. Hunter Syndrome. JAMA Dermatol 2022; 158:1438. [PMID: 36260294 DOI: 10.1001/jamadermatol.2022.4049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This case report describes multiple symmetric, skin-colored papulonodules overlying the scapulae and posterior shoulders that gave the appearance of pebbled skin.
Collapse
Affiliation(s)
- Piyush Kumar
- Dermatology, Madhubani Medical College and Hospital, Madhubani, India
| | | | - Anupam Das
- Department of Dermatology, KPC Medical College and Hospital, Kolkata, West Bengal, India
| |
Collapse
|
7
|
Gaudioso Á, Silva TP, Ledesma MD. Models to study basic and applied aspects of lysosomal storage disorders. Adv Drug Deliv Rev 2022; 190:114532. [PMID: 36122863 DOI: 10.1016/j.addr.2022.114532] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 08/05/2022] [Accepted: 09/04/2022] [Indexed: 01/24/2023]
Abstract
The lack of available treatments and fatal outcome in most lysosomal storage disorders (LSDs) have spurred research on pathological mechanisms and novel therapies in recent years. In this effort, experimental methodology in cellular and animal models have been developed, with aims to address major challenges in many LSDs such as patient-to-patient variability and brain condition. These techniques and models have advanced knowledge not only of LSDs but also for other lysosomal disorders and have provided fundamental insights into the biological roles of lysosomes. They can also serve to assess the efficacy of classical therapies and modern drug delivery systems. Here, we summarize the techniques and models used in LSD research, which include both established and recently developed in vitro methods, with general utility or specifically addressing lysosomal features. We also review animal models of LSDs together with cutting-edge technology that may reduce the need for animals in the study of these devastating diseases.
Collapse
Affiliation(s)
- Ángel Gaudioso
- Centro Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Teresa P Silva
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | | |
Collapse
|
8
|
Corrêa T, Poswar F, Santos-Rebouças CB. Convergent molecular mechanisms underlying cognitive impairment in mucopolysaccharidosis type II. Metab Brain Dis 2022; 37:2089-2102. [PMID: 34797484 DOI: 10.1007/s11011-021-00872-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/02/2021] [Indexed: 11/26/2022]
Abstract
Mucopolysaccharidosis type II (MPS II) is a lysosomal storage disorder caused by pathogenic variants in the iduronate-2-sulfatase gene (IDS), responsible for the degradation of glycosaminoglycans (GAGs) heparan and dermatan sulfate. IDS enzyme deficiency results in the accumulation of GAGs within cells and tissues, including the central nervous system (CNS). The progressive neurological outcome in a representative number of MPSII patients (neuronopathic form) involves cognitive impairment, behavioral difficulties, and regression in developmental milestones. In an attempt to dissect part of the influence of axon guidance instability over the cognitive impairment presentation in MPS II, we used brain expression data, network propagation, and clustering algorithm to prioritize in the human interactome a disease module associated with the MPS II context. We identified new candidate genes and pathways that act in focal adhesion, integrin cell surface, laminin interactions, ECM proteoglycans, cytoskeleton, and phagosome that converge into functional mechanisms involved in early neural circuit formation defects and could indicate clues about cognitive impairment in patients with MPSII. Such molecular changes during neurodevelopment may precede the morphological and clinical evidence, emphasizing the importance of an early diagnosis and directing the development of potential drug leads. Furthermore, our data also support previous hypotheses pointing to shared pathogenic mechanisms in some neurodegenerative diseases.
Collapse
Affiliation(s)
- Thiago Corrêa
- Department of Genetics, Institute of Biosciences, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil.
| | - Fabiano Poswar
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Cíntia B Santos-Rebouças
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Glycosaminoglycan signatures in body fluids of mucopolysaccharidosis type II mouse model under long-term enzyme replacement therapy. J Mol Med (Berl) 2022; 100:1169-1179. [PMID: 35816218 PMCID: PMC9329393 DOI: 10.1007/s00109-022-02221-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/09/2022] [Accepted: 06/08/2022] [Indexed: 12/03/2022]
Abstract
Abstract Mucopolysaccharidosis type II (MPS II) is a neurometabolic disorder, due to the deficit of the lysosomal hydrolase iduronate 2-sulfatase (IDS). This leads to a severe clinical condition caused by a multi-organ accumulation of the glycosaminoglycans (GAGs/GAG) heparan- and dermatan-sulfate, whose elevated levels can be detected in body fluids. Since 2006, enzyme replacement therapy (ERT) has been clinically applied, showing efficacy in some peripheral districts. In addition to clinical monitoring, GAG dosage has been commonly used to evaluate ERT efficacy. However, a strict long-term monitoring of GAG content and composition in body fluids has been rarely performed. Here, we report the characterization of plasma and urine GAGs in Ids knock-out (Ids-ko) compared to wild-type (WT) mice, and their changes along a 24-week follow-up, with and without ERT. The concentration of heparan-sulfate (HS), chondroitin-sulfate (CS), and dermatan-sulfate (DS), and of the non-sulfated hyaluronic acid (HA), together with their differentially sulfated species, was quantified by capillary electrophoresis with laser-induced fluorescence. In untreated Ids-ko mice, HS and CS + DS were noticeably increased at all time points, while during ERT follow-up, a substantial decrease was evidenced for HS and, to a minor extent, for CS + DS. Moreover, several structural parameters were altered in untreated ko mice and reduced after ERT, however without reaching physiological values. Among these, disaccharide B and HS 2s disaccharide showed to be the most interesting candidates as biomarkers for MPS II. GAG chemical signature here defined provides potential biomarkers useful for an early diagnosis of MPS II, a more accurate follow-up of ERT, and efficacy evaluations of newly proposed therapies. Key messages Plasmatic and urinary GAGs are useful markers for MPS II early diagnosis and prognosis. CE-LIF allows GAG structural analysis and the quantification of 17 different disaccharides. Most GAG species increase and many structural features are altered in MPS II mouse model. GAG alterations tend to restore to wild-type levels following ERT administration. CS+DS/HS ratio, % 2,4dis CS+DS, and % HS 2s are potential markers for MPS II pathology and ERT efficacy.
Supplementary Information The online version contains supplementary material available at 10.1007/s00109-022-02221-3.
Collapse
|
10
|
Sousa Martins R, Rocha S, Guimas A, Ribeiro R. Hunter Syndrome: The Phenotype of a Rare Storage Disease. Cureus 2022; 14:e21985. [PMID: 35282545 PMCID: PMC8906563 DOI: 10.7759/cureus.21985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2022] [Indexed: 11/26/2022] Open
Abstract
Hunter syndrome is a rare lysosomal storage disorder with systemic involvement that occurs over time. Affected patients have coarse facial features, growth retardation with short stature, and skeletal deformities called dysostosis multiplex; joint stiffness, progressive mental retardation, and organomegaly are some of the clinical signs. It ranges from mild to severe manifestations and the distinction between them is related to neurological involvement. Cardiac and respiratory failure is commonly the cause of early death (before adulthood) for severe forms, but those with attenuated forms who have normal cognitive development can survive until late adulthood. Treatment with enzyme replacement therapy is available and can improve the prognosis of this disease. The authors present a case of a 36-year-old male with Hunter syndrome to show not only the clinical features typical of this multisystemic disease that should alert to a prompt investigation but also to remind that treatment must start as early as possible to reach the best outcome. Management of this disease is typically challenging and requires a multidisciplinary approach.
Collapse
|
11
|
Zhao XY, Qiao GM, Liu F. Identification and structure characterization of novel IDS variants causing mucopolysaccharidosis type II: A retrospective analysis of 30 Chinese children. Clin Chim Acta 2021; 523:386-394. [PMID: 34670126 DOI: 10.1016/j.cca.2021.10.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Mucopolysaccharidosis type II (MPS II) or Hunter syndrome is a rare X-linked recessive genetic disease resulting from deficient activity of the iduronate-2-sulfatase(IDS) enzyme and the accumulation of glycosaminoglycans in almost all cells, tissues and organs, which makes viscera function impaired.This study retrospectively analyzed the clinical characteristics, leukocyte IDS activity and mutations in the IDS gene of 30 Chinese children with MPS II. METHODS Whole-exome sequencing (WES) was performed on samples of the 30 patients. RESULTS A total of 25 mutations were identified in the IDS genes including 16 previously reported and 9 novel mutations (6 frameshift: c.815-818dupAACG, c.1453dupA, c.1270-1271delGT, c.1484-1485insTA, c.854delA, c.12_13delCC;3missense: c.325 T > G, c.140 T > C, c.248 T > G).The computer simulations of the protein structure analysis of the novel missense mutations showed these amino acid replacements (W109G tryptophan replaced by the glycine, L47P leucine replaced by the proline, V83G valine replaced by glycine) near the active site of IDS protein sulfatase domain and would cause a severe impairment of protein structure and function. CONCLUSIONS Our study expands the spectrum of MPS II genotype, provides new insights into the molecular mechanisms of MPS II, and contributes to future studies of genotype-phenotypic associations to estimate prognosis and develop new treatment regimens.
Collapse
Affiliation(s)
- Xiao-Ying Zhao
- Department of Pediatrics, Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Guang-Ming Qiao
- Department of Hematology, Children's Hospital of Integrated Traditional Chinese and Western Medicine, Shijiazhuang 050000, Hebei, China
| | - Fang Liu
- Department of Pediatrics, Hebei Medical University, Shijiazhuang 050000, Hebei, China; Department of Pediatrics, NICU, the 980th Hospital of the People's Liberation Army Joint Service Support Force, Shijiazhuang 050082, Hebei, China.
| |
Collapse
|
12
|
Differences in MPS I and MPS II Disease Manifestations. Int J Mol Sci 2021; 22:ijms22157888. [PMID: 34360653 PMCID: PMC8345985 DOI: 10.3390/ijms22157888] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
Mucopolysaccharidosis (MPS) type I and II are two closely related lysosomal storage diseases associated with disrupted glycosaminoglycan catabolism. In MPS II, the first step of degradation of heparan sulfate (HS) and dermatan sulfate (DS) is blocked by a deficiency in the lysosomal enzyme iduronate 2-sulfatase (IDS), while, in MPS I, blockage of the second step is caused by a deficiency in iduronidase (IDUA). The subsequent accumulation of HS and DS causes lysosomal hypertrophy and an increase in the number of lysosomes in cells, and impacts cellular functions, like cell adhesion, endocytosis, intracellular trafficking of different molecules, intracellular ionic balance, and inflammation. Characteristic phenotypical manifestations of both MPS I and II include skeletal disease, reflected in short stature, inguinal and umbilical hernias, hydrocephalus, hearing loss, coarse facial features, protruded abdomen with hepatosplenomegaly, and neurological involvement with varying functional concerns. However, a few manifestations are disease-specific, including corneal clouding in MPS I, epidermal manifestations in MPS II, and differences in the severity and nature of behavioral concerns. These phenotypic differences appear to be related to different ratios between DS and HS, and their sulfation levels. MPS I is characterized by higher DS/HS levels and lower sulfation levels, while HS levels dominate over DS levels in MPS II and sulfation levels are higher. The high presence of DS in the cornea and its involvement in the arrangement of collagen fibrils potentially causes corneal clouding to be prevalent in MPS I, but not in MPS II. The differences in neurological involvement may be due to the increased HS levels in MPS II, because of the involvement of HS in neuronal development. Current treatment options for patients with MPS II are often restricted to enzyme replacement therapy (ERT). While ERT has beneficial effects on respiratory and cardiopulmonary function and extends the lifespan of the patients, it does not significantly affect CNS manifestations, probably because the enzyme cannot pass the blood-brain barrier at sufficient levels. Many experimental therapies, therefore, aim at delivery of IDS to the CNS in an attempt to prevent neurocognitive decline in the patients.
Collapse
|