1
|
Pazderová L, Benešová M, Havlíčková J, Vojtíčková M, Kotek J, Lubal P, Ullrich M, Walther M, Schulze S, Neuber C, Rammelt S, Pietzsch HJ, Pietzsch J, Kubíček V, Hermann P. Cyclam with a phosphinate-bis(phosphonate) pendant arm is a bone-targeting carrier of copper radionuclides. Dalton Trans 2022; 51:9541-9555. [PMID: 35670322 DOI: 10.1039/d2dt01172g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ligands combining a bis(phosphonate) group with a macrocycle function as metal isotope carriers for radionuclide-based imaging and for treating bone metastases associated with several cancers. However, bis(phosphonate) pendant arms often slow down complex formation and decrease radiochemical yields. Nevertheless, their negative effect on complexation rates may be mitigated by using a suitable spacer between bis(phosphonate) and the macrocycle. To demonstrate the potential of bis(phosphonate) bearing macrocyclic ligands as a copper radioisotope carrier, we report the synthesis of a new cyclam derivative bearing a phosphinate-bis(phosphonate) pendant (H5te1PBP). The ligand showed a high selectivity to CuII over ZnII and NiII ions, and the bis(phosphonate) group was not coordinated in the CuII complex, strongly interacting with other metal ions in solution. The CuII complex formed quickly, in 1 s, at pH 5 and at a millimolar scale. The complexation rates significantly differed under a ligand or metal ion excess due to the formation of reaction intermediates differing in their metal-to-ligand ratio and protonation state, respectively. The CuII-te1PBP complex also showed a high resistance to acid-assisted hydrolysis (t1/2 2.7 h; 1 M HClO4, 25 °C) and was effectively adsorbed on the hydroxyapatite surface. H5te1PBP radiolabeling with [64Cu]CuCl2 was fast and efficient, with specific activities of approximately 30 GBq 64Cu per 1 μmol of ligand (pH 5.5, room temperature, 30 min). In a pilot experiment, we further demonstrated the excellent suitability of [64Cu]CuII-te1PBP for imaging active bone compartments by dedicated small animal PET/CT in healthy mice and subsequently in a rat femoral defect model, in direct comparison with [18F]fluoride. Moreover, [64Cu]CuII-te1PBP showed a higher uptake in critical bone defect regions. Therefore, our study highlights the potential of [64Cu]CuII-te1PBP as a PET radiotracer for evaluating bone healing in preclinical and clinical settings with a diagnostic value similar to that of [18F]fluoride, albeit with a longer half-life (12.7 h) than 18F (1.8 h), thereby enabling extended observation times.
Collapse
Affiliation(s)
- Lucia Pazderová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic.
| | - Martina Benešová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic. .,Research Group Molecular Biology of Systemic Radiotherapy, German Cancer Research Center, Im Neuenheimer Feld 223, 69120 Heidelberg, Germany
| | - Jana Havlíčková
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic.
| | - Margareta Vojtíčková
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic.
| | - Jan Kotek
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic.
| | - Přemysl Lubal
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Martin Ullrich
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Martin Walther
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Sabine Schulze
- Technische Universität Dresden, Faculty of Medicine, Centre for Translational Bone, Joint and Soft Tissue Research, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Christin Neuber
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Stefan Rammelt
- Technische Universität Dresden, University Hospital Carl Gustav Carus, University Center for Orthopaedics and Traumatology, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Hans-Jürgen Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany.,Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, 01069 Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany.,Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, 01069 Dresden, Germany
| | - Vojtěch Kubíček
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic.
| | - Petr Hermann
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic.
| |
Collapse
|
2
|
Kubinec J, Širůčková V, Havlíčková J, Kotek J, Kubicek V, Lubal P, Hermann P. Complexes of NOTA‐monoamides with CuII ion: Structural, equilibrium and kinetic study. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jan Kubinec
- Univerzita Karlova Přírodovědecká fakulta: Univerzita Karlova Prirodovedecka fakulta Department of Inorganic Chemistry CZECH REPUBLIC
| | - Viktorie Širůčková
- Masarykova univerzita Přírodovědecká fakulta: Masarykova univerzita Prirodovedecka Fakulta Department of Chemistry CZECH REPUBLIC
| | - Jana Havlíčková
- PřF UK: Univerzita Karlova Prirodovedecka fakulta Department of Inorganic Chemistry CZECH REPUBLIC
| | - Jan Kotek
- Univerzita Karlova Prirodovedecka fakulta Department of Inorganic Chemistry CZECH REPUBLIC
| | - Vojtech Kubicek
- Charles University in Prague, Faculty of Science Department of Inorganic Chemistry Hlavova 2030 128 40 Prague 2 CZECH REPUBLIC
| | - Přemysl Lubal
- Masarykova univerzita Přírodovědecká fakulta: Masarykova univerzita Prirodovedecka Fakulta Department of Chemistry CZECH REPUBLIC
| | - Petr Hermann
- Univerzita Karlova Přírodovědecká fakulta: Univerzita Karlova Prirodovedecka fakulta Departmnet of Inorganic Chemistry CZECH REPUBLIC
| |
Collapse
|
3
|
Blahut J, Benda L, Kotek J, Pintacuda G, Hermann P. Paramagnetic Cobalt(II) Complexes with Cyclam Derivatives: Toward 19F MRI Contrast Agents. Inorg Chem 2020; 59:10071-10082. [DOI: 10.1021/acs.inorgchem.0c01216] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jan Blahut
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 12843 Prague 2, Czech Republic
- High-Field NMR Centre, CNRS FRE2034/UCB de Lyon 1/ENS de Lyon, 5 rue de la Doua, 69100 Lyon-Villeurbanne, France
| | - Ladislav Benda
- High-Field NMR Centre, CNRS FRE2034/UCB de Lyon 1/ENS de Lyon, 5 rue de la Doua, 69100 Lyon-Villeurbanne, France
| | - Jan Kotek
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 12843 Prague 2, Czech Republic
| | - Guido Pintacuda
- High-Field NMR Centre, CNRS FRE2034/UCB de Lyon 1/ENS de Lyon, 5 rue de la Doua, 69100 Lyon-Villeurbanne, France
| | - Petr Hermann
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 12843 Prague 2, Czech Republic
| |
Collapse
|
4
|
Pazderová L, David T, Hlinová V, Plutnar J, Kotek J, Lubal P, Kubíček V, Hermann P. Cross-Bridged Cyclam with Phosphonate and Phosphinate Pendant Arms: Chelators for Copper Radioisotopes with Fast Complexation. Inorg Chem 2020; 59:8432-8443. [PMID: 32437603 DOI: 10.1021/acs.inorgchem.0c00856] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cross-bridged cyclam derivatives bearing two phosphonate (H4L1), bis(phosphinate) (H4L2), or phosphinate (H2L3) pendant arms were synthesized and studied with respect to their application as copper radioisotope carriers in nuclear medicine. The ligands show high macrocycle basicity (pK1 > 14) and high Cu(II) complex stability (log K = 20-24). The complexation and dissociation kinetics of the Cu(II) complexes were studied by ultraviolet-visible spectroscopy. Phosphonate Cu(II)-H4L1 and bis(phosphinate) Cu(II)-H4L2 complexes form very quickly, reaching quantitative formation within 1 s at pH ∼6 and millimolar concentrations. Conversely, the formation of the phosphinate complex Cu(II)-H2L3 is much slower (9 min at pH ∼6) due to the low stability of the out-of-cage reaction intermediate. All studied complexes are highly kinetically inert, showing half-lives of 120, 11, and 111 h for Cu(II)-H4L1, Cu(II)-H4L2, and Cu(II)-H2L3 complexes, respectively, in 1 M HClO4 at 90 °C. The high thermodynamic stability, fast formation, and extreme kinetic inertness of Cu(II) complexes indicate that phosphonate and bis(phosphinate) derivatives are promising ligands for nuclear medicine.
Collapse
Affiliation(s)
- Lucia Pazderová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
| | - Tomáš David
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
| | - Veronika Hlinová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
| | - Jan Plutnar
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
| | - Jan Kotek
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
| | - Přemysl Lubal
- Department of Chemistry, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Vojtěch Kubíček
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
| | - Petr Hermann
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
| |
Collapse
|
5
|
Medved'ko AV, Dalinger AI, Nuriev VN, Semashko VS, Filatov AV, Ezhov AA, Churakov AV, Howard JAK, Shiryaev AA, Baranchikov AE, Ivanov VK, Vatsadze SZ. Supramolecular Organogels Based on N-Benzyl, N'-Acylbispidinols. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E89. [PMID: 30641896 PMCID: PMC6359647 DOI: 10.3390/nano9010089] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/24/2018] [Accepted: 01/03/2019] [Indexed: 12/12/2022]
Abstract
The acylation of unsymmetrical N-benzylbispidinols in aromatic solvents without an external base led to the formation of supramolecular gels, which possess different thicknesses and degrees of stability depending on the substituents in para-positions of the benzylic group as well as on the nature of the acylating agent and of the solvent used. Structural features of the native gels as well as of their dried forms were studied by complementary techniques including Fourier-transform infrared (FTIR) and attenuated total reflection (ATR) spectroscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and small-angle X-ray scattering and diffraction (SAXS). Structures of the key crystalline compounds were established by X-ray diffraction. An analysis of the obtained data allowed speculation on the crucial structural and condition factors that governed the gel formation. The most important factors were as follows: (i) absence of base, either external or internal; (ii) presence of HCl; (iii) presence of carbonyl and hydroxyl groups to allow hydrogen bonding; and (iv) presence of two (hetero)aromatic rings at both sides of the molecule. The hydrogen bonding involving amide carbonyl, hydroxyl at position 9, and, very probably, ammonium N-H⁺ and Cl- anion appears to be responsible for the formation of infinite molecular chains required for the first step of gel formation. Subsequent lateral cooperation of molecular chains into fibers occurred, presumably, due to the aromatic π-π-stacking interactions. Supercritical carbon dioxide drying of the organogels gave rise to aerogels with morphologies different from that of air-dried samples.
Collapse
Affiliation(s)
- Alexey V Medved'ko
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia.
| | | | - Vyacheslav N Nuriev
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Vera S Semashko
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Andrei V Filatov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Alexander A Ezhov
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia.
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Andrei V Churakov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia.
| | | | - Andrey A Shiryaev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia.
- Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences, 119017 Moscow, Russia.
| | - Alexander E Baranchikov
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia.
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Vladimir K Ivanov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia.
- Faculty of Material Science, Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Sergey Z Vatsadze
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia.
| |
Collapse
|
6
|
Ahmedova A, Todorov B, Burdzhiev N, Goze C. Copper radiopharmaceuticals for theranostic applications. Eur J Med Chem 2018; 157:1406-1425. [DOI: 10.1016/j.ejmech.2018.08.051] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 08/15/2018] [Accepted: 08/18/2018] [Indexed: 12/12/2022]
|
7
|
Ziegler M, Alt K, Paterson BM, Kanellakis P, Bobik A, Donnelly PS, Hagemeyer CE, Peter K. Highly Sensitive Detection of Minimal Cardiac Ischemia using Positron Emission Tomography Imaging of Activated Platelets. Sci Rep 2016; 6:38161. [PMID: 27909290 PMCID: PMC5133579 DOI: 10.1038/srep38161] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/04/2016] [Indexed: 01/12/2023] Open
Abstract
A reliable method for the diagnosis of minimal cardiac ischemia would meet a strong demand for the sensitive diagnosis of coronary artery disease in cardiac stress testing and risk stratification in patients with chest pain but unremarkable ECGs and biomarkers. We hypothesized that platelets accumulate early on in ischemic myocardium and a newly developed technology of non-invasive molecular PET imaging of activated platelets can thus detect minimal degrees of myocardial ischemia. To induce different degrees of minimal cardiac ischemia, the left anterior descending artery (LAD) was ligated for 10, 20 or 60 min. Mice were injected with a newly generated scFvanti-GPIIb/IIIa-64CuMeCOSar radiotracer, composed of a single-chain antibody that only binds to activated integrin GPIIb/IIIa (αIIbβIII) and thus to activated platelets, and a sarcophagine cage MeCOSar complexing the long half-life PET tracer copper-64. A single PET/CT scan was performed. Evans Blue/TTC staining to detect necrosis as well as classical serological biomarkers like Troponin I and heart-type fatty acid-binding protein (H-FABP) were negative, whereas PET imaging of activated platelets was able to detect small degrees of ischemia. Taken together, molecular PET imaging of activated platelets represents a unique and highly sensitive method to detect minimal cardiac ischemia.
Collapse
Affiliation(s)
- Melanie Ziegler
- Atherothrombosis and Vascular Biology, Baker IDI Heart &Diabetes Institute, Melbourne, Australia
| | - Karen Alt
- Atherothrombosis and Vascular Biology, Baker IDI Heart &Diabetes Institute, Melbourne, Australia.,Vascular Biotechnology, Baker IDI Heart &Diabetes Institute, Melbourne, Australia
| | - Brett M Paterson
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Peter Kanellakis
- Vascular Biology &Atherosclerosis, Baker IDI Heart &Diabetes Institute, Melbourne, Australia
| | - Alex Bobik
- Vascular Biology &Atherosclerosis, Baker IDI Heart &Diabetes Institute, Melbourne, Australia
| | - Paul S Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Christoph E Hagemeyer
- Vascular Biotechnology, Baker IDI Heart &Diabetes Institute, Melbourne, Australia.,Central Clinical School, Monash University, Melbourne, Australia.,RMIT University, Melbourne, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology, Baker IDI Heart &Diabetes Institute, Melbourne, Australia.,Central Clinical School, Monash University, Melbourne, Australia.,RMIT University, Melbourne, Australia
| |
Collapse
|