1
|
Crystal structure, physical study and Hirshfeld surface analysis of (C9H26N4)[SnCl6]Cl2·2H2O. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
2
|
Blahut J, Benda L, Kotek J, Pintacuda G, Hermann P. Paramagnetic Cobalt(II) Complexes with Cyclam Derivatives: Toward 19F MRI Contrast Agents. Inorg Chem 2020; 59:10071-10082. [DOI: 10.1021/acs.inorgchem.0c01216] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jan Blahut
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 12843 Prague 2, Czech Republic
- High-Field NMR Centre, CNRS FRE2034/UCB de Lyon 1/ENS de Lyon, 5 rue de la Doua, 69100 Lyon-Villeurbanne, France
| | - Ladislav Benda
- High-Field NMR Centre, CNRS FRE2034/UCB de Lyon 1/ENS de Lyon, 5 rue de la Doua, 69100 Lyon-Villeurbanne, France
| | - Jan Kotek
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 12843 Prague 2, Czech Republic
| | - Guido Pintacuda
- High-Field NMR Centre, CNRS FRE2034/UCB de Lyon 1/ENS de Lyon, 5 rue de la Doua, 69100 Lyon-Villeurbanne, France
| | - Petr Hermann
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 12843 Prague 2, Czech Republic
| |
Collapse
|
3
|
Kostelnik TI, Wang X, Southcott L, Wagner HK, Kubeil M, Stephan H, Jaraquemada-Peláez MDG, Orvig C. Rapid Thermodynamically Stable Complex Formation of [ nat/111In]In 3+, [ nat/90Y]Y 3+, and [ nat/177Lu]Lu 3+ with H 6dappa. Inorg Chem 2020; 59:7238-7251. [PMID: 32337985 DOI: 10.1021/acs.inorgchem.0c00671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A phosphinate-bearing picolinic acid-based chelating ligand (H6dappa) was synthesized and characterized to assess its potential as a bifunctional chelator (BFC) for inorganic radiopharmaceuticals. Nuclear magnetic resonance (NMR) spectroscopy was employed to investigate the chelator coordination chemistry with a variety of nonradioactive trivalent metal ions (In3+, Lu3+, Y3+, Sc3+, La3+, Bi3+). Density functional theory (DFT) calculations explored the coordination environments of aforementioned metal complexes. The thermodynamic stability of H6dappa with four metal ions (In3+, Lu3+, Y3+, Sc3+) was deeply investigated via potentiometric and spectrophotometric (UV-vis) titrations, employing a combination of acidic in-batch, joint potentiometric/spectrophotometric, and ligand-ligand competition titrations; high stability constants and pM values were calculated for all four metal complexes. Radiolabeling conditions for three clinically relevant radiometal ions were optimized ([111In]In3+, [177Lu]Lu3+, [90Y]Y3+), and the serum stability of [111In][In(dappa)]3- was studied. Through concentration-, time-, temperature-, and pH-dependent labeling experiments, it was determined that H6dappa radiolabels most effectively at near-physiological pH for all radiometal ions. Furthermore, very rapid radiolabeling at ambient temperature was observed, as maximal radiolabeling was achieved in less than 1 min. Molar activities of 29.8 GBq/μmol and 28.2 GBq/μmol were achieved for [111In]In3+ and [177Lu]Lu3+, respectively. For H6dappa, high thermodynamic stability did not correlate with kinetic inertness-lability was observed in serum stability studies, suggesting that its metal complexes might not be suitable as a BFC in radiopharmaceuticals.
Collapse
Affiliation(s)
- Thomas I Kostelnik
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.,Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - Xiaozhu Wang
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Lily Southcott
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.,Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - Hannah K Wagner
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.,Anorganish-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, 69120 Heidelberg, Germany
| | - Manja Kubeil
- Institute of Radiopharmaceutical Cancer Research, Helmholtz - Zentrum Dresden - Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Holger Stephan
- Institute of Radiopharmaceutical Cancer Research, Helmholtz - Zentrum Dresden - Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - María de Guadalupe Jaraquemada-Peláez
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
4
|
Okoye NC, Baumeister JE, Najafi Khosroshahi F, Hennkens HM, Jurisson SS. Chelators and metal complex stability for radiopharmaceutical applications. RADIOCHIM ACTA 2019. [DOI: 10.1515/ract-2018-3090] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Diagnostic and therapeutic nuclear medicine relies heavily on radiometal nuclides. The most widely used and well-known radionuclide is technetium-99m (99mTc), which has dominated diagnostic nuclear medicine since the advent of the 99Mo/99mTc generator in the 1960s. Since that time, many more radiometals have been developed and incorporated into potential radiopharmaceuticals. One critical aspect of radiometal-containing radiopharmaceuticals is their stability under in vivo conditions. The chelator that is coordinated to the radiometal is a key factor in determining radiometal complex stability. The chelators that have shown the most promise and are under investigation in the development of diagnostic and therapeutic radiopharmaceuticals over the last 5 years are discussed in this review.
Collapse
Affiliation(s)
| | | | | | - Heather M. Hennkens
- Department of Chemistry , University of Missouri , Columbia, MO 65211 , USA
- University of Missouri Research Reactor Center , Columbia, MO 65211 , USA
| | - Silvia S. Jurisson
- Department of Chemistry , University of Missouri , Columbia, MO 65211 , USA
| |
Collapse
|
5
|
Burke BP, Grantham W, Burke MJ, Nichol GS, Roberts D, Renard I, Hargreaves R, Cawthorne C, Archibald SJ, Lusby PJ. Visualizing Kinetically Robust Co III4L 6 Assemblies in Vivo: SPECT Imaging of the Encapsulated [ 99mTc]TcO 4- Anion. J Am Chem Soc 2018; 140:16877-16881. [PMID: 30485075 DOI: 10.1021/jacs.8b09582] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Noncovalent encapsulation is an attractive approach for modifying the efficacy and physiochemical properties of both therapeutic and diagnostic species. Abiotic self-assembled constructs have shown promise, yet many hurdles between in vitro and (pre)clinical studies remain, not least the challenges associated with maintaining the macromolecular, hollow structure under nonequilibrium conditions. Using a kinetically robust CoIII4L6 tetrahedron we now show the feasibility of encapsulating the most widely used precursor in clinical nuclear diagnostic imaging, the γ-emitting [99mTc]TcO4- anion, under conditions compatible with in vivo administration. Subsequent single-photon emission computed tomography imaging of the caged-anion reveals a marked change in the biodistribution compared to the thyroid-accumulating free oxo-anion, thus moving clinical applications of (metallo)supramolecular species a step closer.
Collapse
Affiliation(s)
- Benjamin P Burke
- Department of Chemistry , University of Hull , Cottingham Road , Hull HU6 7RX , United Kingdom.,Positron Emission Tomography Research Centre , University of Hull , Cottingham Road , Hull HU6 7RX , United Kingdom
| | - William Grantham
- EaStCHEM School of Chemistry , University of Edinburgh , Joseph Black Building, David Brewster Road , Edinburgh EH9 3FJ , Scotland
| | - Michael J Burke
- EaStCHEM School of Chemistry , University of Edinburgh , Joseph Black Building, David Brewster Road , Edinburgh EH9 3FJ , Scotland
| | - Gary S Nichol
- EaStCHEM School of Chemistry , University of Edinburgh , Joseph Black Building, David Brewster Road , Edinburgh EH9 3FJ , Scotland
| | - David Roberts
- School of Life Sciences , University of Hull , Cottingham Road , Hull HU6 7RX , United Kingdom.,Positron Emission Tomography Research Centre , University of Hull , Cottingham Road , Hull HU6 7RX , United Kingdom
| | - Isaline Renard
- Department of Chemistry , University of Hull , Cottingham Road , Hull HU6 7RX , United Kingdom.,Positron Emission Tomography Research Centre , University of Hull , Cottingham Road , Hull HU6 7RX , United Kingdom
| | - Rebecca Hargreaves
- Department of Chemistry , University of Hull , Cottingham Road , Hull HU6 7RX , United Kingdom.,Positron Emission Tomography Research Centre , University of Hull , Cottingham Road , Hull HU6 7RX , United Kingdom
| | - Christopher Cawthorne
- School of Life Sciences , University of Hull , Cottingham Road , Hull HU6 7RX , United Kingdom.,Positron Emission Tomography Research Centre , University of Hull , Cottingham Road , Hull HU6 7RX , United Kingdom
| | - Stephen J Archibald
- Department of Chemistry , University of Hull , Cottingham Road , Hull HU6 7RX , United Kingdom.,Positron Emission Tomography Research Centre , University of Hull , Cottingham Road , Hull HU6 7RX , United Kingdom
| | - Paul J Lusby
- EaStCHEM School of Chemistry , University of Edinburgh , Joseph Black Building, David Brewster Road , Edinburgh EH9 3FJ , Scotland
| |
Collapse
|
6
|
Le Fur M, Molnár E, Beyler M, Fougère O, Esteban-Gómez D, Rousseaux O, Tripier R, Tircsó G, Platas-Iglesias C. Expanding the Family of Pyclen-Based Ligands Bearing Pendant Picolinate Arms for Lanthanide Complexation. Inorg Chem 2018; 57:6932-6945. [DOI: 10.1021/acs.inorgchem.8b00598] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Mariane Le Fur
- Université de Bretagne Occidentale, UMR-CNRS 6521, IBSAM, UFR des Sciences et Techniques, 6 avenue Victor le Gorgeu, C.S. 93837, 29238 Brest Cedex 3, France
| | - Enikő Molnár
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Maryline Beyler
- Université de Bretagne Occidentale, UMR-CNRS 6521, IBSAM, UFR des Sciences et Techniques, 6 avenue Victor le Gorgeu, C.S. 93837, 29238 Brest Cedex 3, France
| | - Olivier Fougère
- Groupe Guerbet,
Centre de Recherche d’Aulnay-sous-Bois, BP 57400, 95943 Roissy CdG Cedex, France
| | - David Esteban-Gómez
- Departamento de Química, Facultade de Ciencias & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain
| | - Olivier Rousseaux
- Groupe Guerbet,
Centre de Recherche d’Aulnay-sous-Bois, BP 57400, 95943 Roissy CdG Cedex, France
| | - Raphaël Tripier
- Université de Bretagne Occidentale, UMR-CNRS 6521, IBSAM, UFR des Sciences et Techniques, 6 avenue Victor le Gorgeu, C.S. 93837, 29238 Brest Cedex 3, France
| | - Gyula Tircsó
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Carlos Platas-Iglesias
- Departamento de Química, Facultade de Ciencias & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain
| |
Collapse
|
7
|
Paúrová M, David T, Císařová I, Lubal P, Hermann P, Kotek J. Optimization of the selectivity and rate of copper radioisotope complexation: formation and dissociation kinetic studies of 1,4,8-trimethylcyclam-based ligands with different coordinating pendant arms. NEW J CHEM 2018. [DOI: 10.1039/c8nj00419f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Influence of coordinating pendant arm character on selectivity and rate of copper(ii) complexation was investigated to optimize ligands for radiomedicinal use.
Collapse
Affiliation(s)
- Monika Paúrová
- Department of Inorganic Chemistry
- Faculty of Science
- Charles University
- Czech Republic
| | - Tomáš David
- Department of Inorganic Chemistry
- Faculty of Science
- Charles University
- Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry
- Faculty of Science
- Charles University
- Czech Republic
| | - Přemysl Lubal
- Department of Chemistry
- Faculty of Science
- Masaryk University
- Brno
- Czech Republic
| | - Petr Hermann
- Department of Inorganic Chemistry
- Faculty of Science
- Charles University
- Czech Republic
| | - Jan Kotek
- Department of Inorganic Chemistry
- Faculty of Science
- Charles University
- Czech Republic
| |
Collapse
|