1
|
Heshammuddin NA, Al-Gheethi A, Saphira Radin Mohamed RM, Bin Khamidun MH. Eliminating xenobiotics organic compounds from greywater through green synthetic nanoparticles. ENVIRONMENTAL RESEARCH 2023; 222:115316. [PMID: 36669587 DOI: 10.1016/j.envres.2023.115316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/03/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Xenobiotic Organic Compounds (XOCs) have been widely considered to be pollutant compounds due to their harmful impacts on aquatic life. However, there have been few rigorous studies of cutting-edge technology used to eradicate XOCs and their presence in bathroom greywater. The present review provides a comprehensive examination of current methodologies used for removing XOCs by photocatalysis of green nanoparticles. It was appeared that zinc oxide nanoparticles (ZnO NPs) have high efficiency (99%) in photocatalysis process. Green synthesis provides proven processes that do not require dangerous chemicals or expensive equipment, making photocatalysis a potential solution for the status quo. XOCs residue was decomposed, and pollutants were eliminated with varied degrees of efficiency using green synthesis ZnO nanoparticles. It is hypothesized that the utilization of photocatalysis can create a greywater treatment system capable of degrading the toxic XOCs in greywater while increasing the pace of production. Hence, this review will be beneficial in improving greywater quality and photocatalysis using green nanoparticles can be an immediate platform in solving the issue regarding the existence of XOCs in greywater in Malaysia. Researchers in the future may benefit from focusing on optimizing photocatalytic degradation using green-synthesis ZnO. It might also help with the creativity and productivity of the next generation of authoritative concerns, notably water conservation.
Collapse
Affiliation(s)
- Nurul Atikah Heshammuddin
- Department of Water and Environmental Engineering, Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia; Micropollutant Research Centre (MPRC), Institute of Integrated Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Adel Al-Gheethi
- Department of Water and Environmental Engineering, Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia; Micropollutant Research Centre (MPRC), Institute of Integrated Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia.
| | - Radin Maya Saphira Radin Mohamed
- Department of Water and Environmental Engineering, Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia; Micropollutant Research Centre (MPRC), Institute of Integrated Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia.
| | - Mohd Hairul Bin Khamidun
- Department of Water and Environmental Engineering, Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia; Micropollutant Research Centre (MPRC), Institute of Integrated Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| |
Collapse
|
2
|
Jiang L, Yang Q, Xia Z, Yu X, Zhao M, Shi Q, Yu Q. Recent progress of theoretical studies on electro- and photo-chemical conversion of CO 2 with single-atom catalysts. RSC Adv 2023; 13:5833-5850. [PMID: 36816079 PMCID: PMC9932639 DOI: 10.1039/d2ra08021d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
The CO2 reduction reaction (CO2RR) into chemical products is a promising and efficient way to combat the global warming issue and greenhouse effect. The viability of the CO2RR critically rests with finding highly active and selective catalysts that can accomplish the desired chemical transformation. Single-atom catalysts (SACs) are ideal in fulfilling this goal due to the well-defined active sites and support-tunable electronic structure, and exhibit enhanced activity and high selectivity for the CO2RR. In this review, we present the recent progress of quantum-theoretical studies on electro- and photo-chemical conversion of CO2 with SACs and frameworks. Various calculated products of CO2RR with SACs have been discussed, including CO, acids, alcohols, hydrocarbons and other organics. Meanwhile, the critical challenges and the pathway towards improving the efficiency of the CO2RR have also been discussed.
Collapse
Affiliation(s)
- Liyun Jiang
- School of Physics and Telecommunication Engineering, School of Materials Science and Engineering, Shaanxi Laboratory of Catalysis, Shaanxi University of Technology Hanzhong 723001 China
| | - Qingqing Yang
- School of Physics and Telecommunication Engineering, School of Materials Science and Engineering, Shaanxi Laboratory of Catalysis, Shaanxi University of Technology Hanzhong 723001 China
| | - Zhaoming Xia
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University Beijing China
| | - Xiaohu Yu
- School of Physics and Telecommunication Engineering, School of Materials Science and Engineering, Shaanxi Laboratory of Catalysis, Shaanxi University of Technology Hanzhong 723001 China
| | - Mengdie Zhao
- School of Physics and Telecommunication Engineering, School of Materials Science and Engineering, Shaanxi Laboratory of Catalysis, Shaanxi University of Technology Hanzhong 723001 China
| | - Qiping Shi
- School of Physics and Telecommunication Engineering, School of Materials Science and Engineering, Shaanxi Laboratory of Catalysis, Shaanxi University of Technology Hanzhong 723001 China
| | - Qi Yu
- School of Physics and Telecommunication Engineering, School of Materials Science and Engineering, Shaanxi Laboratory of Catalysis, Shaanxi University of Technology Hanzhong 723001 China
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
3
|
Nishchakova AD, Bulushev DA, Trubina SV, Stonkus OA, Shubin YV, Asanov IP, Kriventsov VV, Okotrub AV, Bulusheva LG. Highly Dispersed Ni on Nitrogen-Doped Carbon for Stable and Selective Hydrogen Generation from Gaseous Formic Acid. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:545. [PMID: 36770506 PMCID: PMC9921425 DOI: 10.3390/nano13030545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Ni supported on N-doped carbon is rarely studied in traditional catalytic reactions. To fill this gap, we compared the structure of 1 and 6 wt% Ni species on porous N-free and N-doped carbon and their efficiency in hydrogen generation from gaseous formic acid. On the N-free carbon support, Ni formed nanoparticles with a mean size of 3.2 nm. N-doped carbon support contained Ni single-atoms stabilized by four pyridinic N atoms (N4-site) and sub-nanosized Ni clusters. Density functional theory calculations confirmed the clustering of Ni when the N4-sites were fully occupied. Kinetic studies revealed the same specific Ni mass-based reaction rate for single-atoms and clusters. The N-doped catalyst with 6 wt% of Ni showed higher selectivity in hydrogen production and did not lose activity as compared to the N-free 6 wt% Ni catalyst. The presented results can be used to develop stable Ni catalysts supported on N-doped carbon for various reactions.
Collapse
Affiliation(s)
- Alina D. Nishchakova
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Dmitri A. Bulushev
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Svetlana V. Trubina
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Olga A. Stonkus
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Yury V. Shubin
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Igor P. Asanov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Vladimir V. Kriventsov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Alexander V. Okotrub
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Lyubov G. Bulusheva
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| |
Collapse
|
4
|
Liu H, Zou H, Wang M, Dong H, Wang D, Li F, Dai H, Song T, Wei S, Ji Y, Wang C, Duan L. Single-Site Heterogeneous Organometallic Ir Catalysts Embedded on Graphdiyne: Structural Manipulation Beyond the Carbon Support. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203442. [PMID: 36156407 DOI: 10.1002/smll.202203442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Accurate control over the coordination circumstances of single-atom catalysts (SACs) is decisive to their intrinsic activity. Here, two single-site heterogeneous organometallic catalysts (SHOCs), Cp*Ir-L/GDY (L = OH- and Cl- ; Cp* = pentamethylcyclopentadienyl), with the fine-tuned local coordination and electronic structure of Ir sites, are constructed by anchoring Cp*Ir complexes on graphdiyne (GDY) matrix via a one-pot procedure. The spectroscopic studies and theoretical calculations indicate that the Ir atoms in Cp*Ir-Cl/GDY and Cp*Ir-OH/GDY have a much higher oxidation state than Ir in the SAC Ir/GDY. As a proof-of-principle demonstration, the GDY-supported SHOCs are used for formic acid dehydrogenation, which display a fivefold enhancement of catalytic activity compared with SAC Ir/GDY. The kinetic isotope effect and in situ Fourier-transform infrared studies reveal that the rate-limiting step is the β-hydride elimination process, and Cp* on the Ir site accelerates the β-hydride elimination reaction. The GDY-supported SHOCs integrate the merits of both SACs and molecular catalysts, wherein the isolated Ir anchored on GDY echoes with SACs' behavior, and the Cp* ligand enables precise structural and electronic regulation like molecular catalysts. The scheme of SHOCs adds a degree of freedom in accurate regulation of the local structure, the electronic property, and therefore the catalytic performance of single-atom catalysts.
Collapse
Affiliation(s)
- Hong Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Haiyuan Zou
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Mei Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Hongliang Dong
- Center for High-Pressure Science and Technology Advanced Research, Pudong, Shanghai, 201203, P. R. China
| | - Dan Wang
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Fan Li
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Hao Dai
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Tao Song
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Shuting Wei
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yongfei Ji
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, P. R. China
| | - Chenguang Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510075, P. R. China
| | - Lele Duan
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| |
Collapse
|
5
|
Stankevich AV, Tolshchina SG, Korotina AV, Rusinov GL, Chemagina IV, Charushin VN. Mechanism, Kinetics and Thermodynamics of Decomposition for High Energy Derivatives of [1,2,4]Triazolo[4,3-b][1,2,4,5]tetrazine. Molecules 2022; 27:molecules27206966. [PMID: 36296568 PMCID: PMC9610082 DOI: 10.3390/molecules27206966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/27/2022] Open
Abstract
This paper presents the data of research studies on the mechanisms, kinetics and thermodynamics of decomposition of three high-energy compounds: [1,2,4]triazolo[4,3-b][1,2,4,5]tetrazine-3,6-diamine (TTDA), 3-amino-6-hydrazino[1,2,4]triazolo[4,3-b][1,2,4,5]tetrazine (TTGA) and 3,6-dinitroamino[1,2,4]triazolo[4,3-b][1,2,4,5]tetrazine (DNTT). The points of change of the reaction mechanisms under thermal effects with different intensities from 0.1 to 2000 s−1 have been established. The values of activation and induction energies for the limiting stages of decomposition have been obtained. The formation of nanostructured carbon nitride (α-C3N4) in condensed decomposition products, cyanogen (C2N2) and hydrogen cyanide (HCN) in gaseous products have been shown. Concentration-energy diagrams for the reaction products have been compiled. The parameters of heat resistance and thermal safety proved to be: 349.5 °C and 358.2 °C for TTDA; 190.3 °C and 198.0 °C for TTGA; 113.4 °C and 114.1 °C for DNTT. The energy and thermodynamic properties have also been estimated. This work found the activation energy of the decomposition process to be 129.0 kJ/mol for TTDA, 212.2 kJ/mol for TTGA and 292.2 kJ/mol for DNTT. The average induction energy of the catalytic process (Ecat) for TTGA was established to be 21 kJ/mol, and for DNTT-1500–1700 kJ/mol. The induction energy of the inhibition process (Eing) of TTDA was estimated to be 800–1400 kJ/mol.
Collapse
Affiliation(s)
- Aleksandr V. Stankevich
- I.Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, S. Kovalevskaya Str., 22/20, 620108 Ekaterinburg, Russia
- Russian Federal Nuclear Center, All-Russian Research Institute of Technical Physics (RFNC-VNIITF), Vasilieva Street 13, 456770 Snezhinsk, Russia
- Correspondence:
| | - Svetlana G. Tolshchina
- I.Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, S. Kovalevskaya Str., 22/20, 620108 Ekaterinburg, Russia
| | - Anna V. Korotina
- I.Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, S. Kovalevskaya Str., 22/20, 620108 Ekaterinburg, Russia
| | - Gennady L. Rusinov
- I.Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, S. Kovalevskaya Str., 22/20, 620108 Ekaterinburg, Russia
| | - Irina V. Chemagina
- Russian Federal Nuclear Center, All-Russian Research Institute of Technical Physics (RFNC-VNIITF), Vasilieva Street 13, 456770 Snezhinsk, Russia
| | - Valery N. Charushin
- I.Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, S. Kovalevskaya Str., 22/20, 620108 Ekaterinburg, Russia
| |
Collapse
|
6
|
Singh T, Sharma S, Singh R, Pal DB, Ahmad I, Alam MM, Singh NL, Srivastava M, Srivastava N. Sustainable approaches towards green synthesis of TiO 2 nanomaterials and their applications in photo-catalysis mediated sensingtomonitor environmental pollutions. LUMINESCENCE 2022. [PMID: 35997211 DOI: 10.1002/bio.4370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/06/2022]
Abstract
Nanomaterials are gaining enormous interests owing to their novel applications that have been explored nearly in every field of our contemporary society. In this scenario, preparations of nanomaterials following green routes have attracted widespread attention in terms of sustainable, reliable and environmentally friendly practice to produce diverse nanostructures. In this review, we summarized the fundamental processes and mechanisms of green synthesis approaches of TiO2 NPs. We explore the role of plants and microbes as natural bioresources to prepare TiO2 NPs. Particularly, focused have been made to explore the potential of TiO2 based nanomaterials to design variety of sensing platforms by exploiting the photo-catalysis efficiency under the influence of light source. Such types of sensing can of massive importance to monitor the environmental pollutions and thereby to invent advanced strategies to remediate hazardous pollutants to offer clean environment.
Collapse
Affiliation(s)
- Tripti Singh
- School of Biosciences IMS Ghaziabad UC Campus, Ghaziabad, Uttar Pradesh, India
| | - Shalini Sharma
- School of Biosciences IMS Ghaziabad UC Campus, Ghaziabad, Uttar Pradesh, India
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi, India
| | - Dan Bahadur Pal
- Department of Chemical Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Mahtab Alam
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Nand Lal Singh
- Department of chemistry, Banaras Hindu University (BHU), Varanasi, U.P., India
| | - Manish Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Neha Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, India
| |
Collapse
|
7
|
Martínez-Laguna J, Mollar-Cuni A, Ventura-Espinosa D, Martín S, Caballero A, Mata JA, Pérez PJ. Gold nanoparticle-catalysed functionalization of carbon-hydrogen bonds by carbene transfer reactions. Dalton Trans 2022; 51:5250-5256. [PMID: 35285846 DOI: 10.1039/d1dt04351j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gold nanoparticles stabilized by NHC ligands and supported onto reduced graphene oxide (rGO) catalyse the functionalization of cyclohexane and benzene C-H bonds upon insertion of carbene CHCO2Et (from N2CHCO2Et) groups. This is the first example in which such Csp3-H or Csp2-H bonds are functionalized with this strategy with nanoparticulated gold. This Au-NP@rGO material shows an exceptional activity, providing TON values 5-10 times higher than those already reported for molecular gold catalysts. Recyclability is also effective, reaching an accumulated TON value of 1400 after six consecutive uses.
Collapse
Affiliation(s)
- Jonathan Martínez-Laguna
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química. Universidad de Huelva, Campus de El Carmen s/n, 21007-Huelva, Spain.
| | - Andrés Mollar-Cuni
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINCA). Universitat Jaume I, Avda. Sos Baynat s/n, 12006-Castellón, Spain.
| | - David Ventura-Espinosa
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINCA). Universitat Jaume I, Avda. Sos Baynat s/n, 12006-Castellón, Spain.
| | - Santiago Martín
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.,Departamento de Química Física, Universidad de Zaragoza, 50009, Zaragoza (Spain) and Laboratorio de Microscopias Avanzadas (LMA). Universidad de Zaragoza, Edificio I+D+i. 50018, Zaragoza, Spain
| | - Ana Caballero
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química. Universidad de Huelva, Campus de El Carmen s/n, 21007-Huelva, Spain.
| | - Jose A Mata
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINCA). Universitat Jaume I, Avda. Sos Baynat s/n, 12006-Castellón, Spain.
| | - Pedro J Pérez
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química. Universidad de Huelva, Campus de El Carmen s/n, 21007-Huelva, Spain.
| |
Collapse
|
8
|
Zhou X, Wan G, Zhao G, Zhou M, Wang G. Mechanistic inference on the roles of oxygenic functional groups that activate peroxymonosulfates in graphene for advanced oxidation. Dalton Trans 2022; 51:17416-17429. [DOI: 10.1039/d2dt02757g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Developing carbon-based catalysts for advanced oxidation processes, owing to their abundant reserves, metal-free properties as well as great resistance to acids and alkalis, presents an enticing prospect for environmental remediation.
Collapse
Affiliation(s)
- Xuechun Zhou
- Key Laboratory of Advanced Materials of Tropical Island Resources (Hainan University), Ministry of Education, Haikou 570228, China
- School of Materials Science and Engineering, Hainan University, Haikou 570228, P. R. China
| | - Gengping Wan
- Key Laboratory of Advanced Materials of Tropical Island Resources (Hainan University), Ministry of Education, Haikou 570228, China
| | - Guoqing Zhao
- Key Laboratory of Advanced Materials of Tropical Island Resources (Hainan University), Ministry of Education, Haikou 570228, China
- School of Materials Science and Engineering, Hainan University, Haikou 570228, P. R. China
| | - Maofan Zhou
- Key Laboratory of Advanced Materials of Tropical Island Resources (Hainan University), Ministry of Education, Haikou 570228, China
| | - Guizhen Wang
- Key Laboratory of Advanced Materials of Tropical Island Resources (Hainan University), Ministry of Education, Haikou 570228, China
- School of Materials Science and Engineering, Hainan University, Haikou 570228, P. R. China
| |
Collapse
|
9
|
Mallakpour S, Sirous F, Hussain CM. Single-Atoms on Covalent or Metal-Organic Frameworks: Current Findings and Perspectives for Pollutants Abatement, Hydrogen Evolution, and Reduction of CO 2. Top Curr Chem (Cham) 2021; 380:7. [PMID: 34958434 DOI: 10.1007/s41061-021-00363-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023]
Abstract
Nowadays, attention to single-atoms and also porous structures like metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs) for the preparation of high-performance material is expanding rapidly. These dazzling materials with unprecedented properties have lots of applications, especially as promising catalysts for organic pollutants abatement, hydrogen evolution, reduction of CO2, etc. To provide an in-depth understanding, in this mini-review, we begin with a brief description and a general background about single-atoms, COFs, as well as MOFs. After considering some fundamentals, the synergism effects, advantages, and their applications are discussed.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran.
| | - Fariba Sirous
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
10
|
Zhang M, Zhao F, Li H, Dong S, Yang Y, Hou X, An T, Jiang Z. Ferrocene functionalized graphene: preparation, characterization and application as an efficient catalyst for the thermal decomposition of TKX-50. Phys Chem Chem Phys 2021; 23:17567-17575. [PMID: 34369511 DOI: 10.1039/d1cp02777h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel ferrocene functionalized graphene with different molecular structures were designed, fabricated and characterized via SEM, EDS, FTIR, XPS and RAMAN methods. SEM results show the two-dimensional structure of the as-prepared catalysts, and the active metal Fe is uniformly distributed on the surface of graphene. The FTIR, XPS and RAMAN results confirmed the successful preparation of ferrocene functionalized graphene. The catalytic effects of the as-synthesized catalysts for the thermal decomposition of energetic TKX-50 were monitored by DSC, and the corresponding kinetic parameters were calculated using multi kinetic methods including traditional and nonlinear models. The results showed that the as-prepared ferrocene functionalized graphene can effectively promote the thermal decomposition of TKX-50 with the reduced decomposition peak temperatures and activation energies. In addition, the effects of ferrocene functionalized graphene for TKX-50 decomposition are reflected in both high and low temperature stages, and the effect on the high temperature stage is more significant. The outstanding catalytic activity of ferrocene functionalized graphene is related not only to the good dispersion of active Fe, but also to the enhanced interaction of small molecule products on two-dimensional graphene. Among the ferrocene functionalized graphene studied, G-792-Fe and G-902-Fe exhibit better catalytic effects on the thermal decomposition of TKX-50, which can be used as candidate catalysts for TKX-50-based solid propellants.
Collapse
Affiliation(s)
- Ming Zhang
- Science and Technology on Combustion and Explosion Laboratory, Xi'an Modern Chemistry Research Institute, Xi'an 710065, China.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Ganie AS, Bano S, Khan N, Sultana S, Rehman Z, Rahman MM, Sabir S, Coulon F, Khan MZ. Nanoremediation technologies for sustainable remediation of contaminated environments: Recent advances and challenges. CHEMOSPHERE 2021; 275:130065. [PMID: 33652279 DOI: 10.1016/j.chemosphere.2021.130065] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 05/04/2023]
Abstract
A major and growing concern within society is the lack of innovative and effective solutions to mitigate the challenge of environmental pollution. Uncontrolled release of pollutants into the environment as a result of urbanisation and industrialisation is a staggering problem of global concern. Although, the eco-toxicity of nanotechnology is still an issue of debate, however, nanoremediation is a promising emerging technology to tackle environmental contamination, especially dealing with recalcitrant contaminants. Nanoremediation represents an innovative approach for safe and sustainable remediation of persistent organic compounds such as pesticides, chlorinated solvents, brominated or halogenated chemicals, perfluoroalkyl and polyfluoroalkyl substances (PFAS), and heavy metals. This comprehensive review article provides a critical outlook on the recent advances and future perspectives of nanoremediation technologies such as photocatalysis, nano-sensing etc., applied for environmental decontamination. Moreover, sustainability assessment of nanoremediation technologies was taken into consideration for tackling legacy contamination with special focus on health and environmental impacts. The review further outlines the ecological implications of nanotechnology and provides consensus recommendations on the use of nanotechnology for a better present and sustainable future.
Collapse
Affiliation(s)
- Adil Shafi Ganie
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Sayfa Bano
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Nishat Khan
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Saima Sultana
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Zubair Rehman
- Section of Organic Chemistry, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Mohammed M Rahman
- Center of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Suhail Sabir
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, United Kingdom
| | - Mohammad Zain Khan
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India.
| |
Collapse
|
12
|
Martínez‐Laguna J, Caballero A, Pérez PJ. Graphene‐Supported, Well‐Defined Metal‐Based Catalysts for C−H Bond Functionalization and Related Reactions. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jonathan Martínez‐Laguna
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química Universidad de Huelva, Campus de El Carmen s/n 21007- Huelva Spain
| | - Ana Caballero
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química Universidad de Huelva, Campus de El Carmen s/n 21007- Huelva Spain
| | - Pedro J. Pérez
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química Universidad de Huelva, Campus de El Carmen s/n 21007- Huelva Spain
| |
Collapse
|
13
|
Mollar‐Cuni A, Borja P, Martin S, Guisado‐Barrios G, Mata JA. A Platinum Molecular Complex Immobilised on the Surface of Graphene as Active Catalyst in Alkyne Hydrosilylation. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Andres Mollar‐Cuni
- Institute of Advanced Materials (INAM) Centro de Innovación en Química Avanzada (ORFEO‐CINQA) Universitat Jaume I Avda. Sos Baynat s/n 12071 Castellón Spain
| | - Pilar Borja
- Institute of Advanced Materials (INAM) Centro de Innovación en Química Avanzada (ORFEO‐CINQA) Universitat Jaume I Avda. Sos Baynat s/n 12071 Castellón Spain
| | - Santiago Martin
- Departamento de Química Física (Facultad de Ciencias) Instituto de Ciencias de Materiales de Aragón (ICMA) Universidad de Zaragoza‐CSIC C/Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Gregorio Guisado‐Barrios
- Institute of Advanced Materials (INAM) Centro de Innovación en Química Avanzada (ORFEO‐CINQA) Universitat Jaume I Avda. Sos Baynat s/n 12071 Castellón Spain
| | - Jose A. Mata
- Institute of Advanced Materials (INAM) Centro de Innovación en Química Avanzada (ORFEO‐CINQA) Universitat Jaume I Avda. Sos Baynat s/n 12071 Castellón Spain
| |
Collapse
|
14
|
Whang DR. Immobilization of molecular catalysts for artificial photosynthesis. NANO CONVERGENCE 2020; 7:37. [PMID: 33252707 PMCID: PMC7704885 DOI: 10.1186/s40580-020-00248-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/23/2020] [Indexed: 05/08/2023]
Abstract
Artificial photosynthesis offers a way of producing fuels or high-value chemicals using a limitless energy source of sunlight and abundant resources such as water, CO2, and/or O2. Inspired by the strategies in natural photosynthesis, researchers have developed a number of homogeneous molecular systems for photocatalytic, photoelectrocatalytic, and electrocatalytic artificial photosynthesis. However, their photochemical instability in homogeneous solution are hurdles for scaled application in real life. Immobilization of molecular catalysts in solid supports support provides a fine blueprint to tackle this issue. This review highlights the recent developments in (i) techniques for immobilizing molecular catalysts in solid supports and (ii) catalytic water splitting, CO2 reduction, and O2 reduction with the support-immobilized molecular catalysts. Remaining challenges for molecular catalyst-based devices for artificial photosynthesis are discussed in the end of this review.
Collapse
Affiliation(s)
- Dong Ryeol Whang
- Department of Advanced Materials, Hannam University, 34054, Daejeon, Republic of Korea.
| |
Collapse
|
15
|
Influence of graphene sheet properties as supports of iridium-based N-heterocyclic carbene hybrid materials for water oxidation electrocatalysis. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Enhanced Photocatalytic Activity and Stability in Hydrogen Evolution of Mo 6 Iodide Clusters Supported on Graphene Oxide. NANOMATERIALS 2020; 10:nano10071259. [PMID: 32605229 PMCID: PMC7407389 DOI: 10.3390/nano10071259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023]
Abstract
Catalytic properties of the cluster compound (TBA)2[Mo6Ii8(O2CCH3)a6] (TBA = tetrabutylammonium) and a new hybrid material (TBA)2Mo6Ii8@GO (GO = graphene oxide) in water photoreduction into molecular hydrogen were investigated. New hybrid material (TBA)2Mo6Ii8@GO was prepared by coordinative immobilization of the (TBA)2[Mo6Ii8(O2CCH3)a6] onto GO sheets and characterized by spectroscopic, analytical, and morphological techniques. Liquid and, for the first time, gas phase conditions were chosen for catalytic experiments under UV–Vis irradiation. In liquid water, optimal H2 production yields were obtained after using (TBA)2[Mo6Ii8(O2CCH3)a6] and (TBA)2Mo6Ii8@GO) catalysts after 5 h of irradiation of liquid water. Despite these remarkable catalytic performances, “liquid-phase” catalytic systems have serious drawbacks: the cluster anion evolves to less active cluster species with partial hydrolytic decomposition, and the nanocomposite completely decays in the process. Vapor water photoreduction showed lower catalytic performance but offers more advantages in terms of cluster stability, even after longer radiation exposure times and recyclability of both catalysts. The turnover frequency (TOF) of (TBA)2Mo6Ii8@GO is three times higher than that of the microcrystalline (TBA)2[Mo6Ii8(O2CCH3)a6], in agreement with the better accessibility of catalytic cluster sites for water molecules in the gas phase. This bodes well for the possibility of creating {Mo6I8}4+-based materials as catalysts in hydrogen production technology from water vapor.
Collapse
|
17
|
Ochoa E, Henao W, Fuertes S, Torres D, van Haasterecht T, Scott E, Bitter H, Suelves I, Pinilla JL. Synthesis and characterization of a supported Pd complex on carbon nanofibers for the selective decarbonylation of stearic acid to 1-heptadecene: the importance of subnanometric Pd dispersion. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00322k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Evaluation of the dispersion of Pd active sites on the catalyst performance during fatty acids decarbonylation to α-olefins was explored in this work. Pd subnanometric particles, clusters and aggregates were found to modulate the catalyst activity.
Collapse
Affiliation(s)
- Elba Ochoa
- Instituto de Carboquímica
- CSIC
- 50018 Zaragoza
- Spain
| | - Wilson Henao
- Instituto de Carboquímica
- CSIC
- 50018 Zaragoza
- Spain
| | - Sara Fuertes
- Departamento de Química Inorgánica
- Facultad de Ciencias
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)
- CSIC – Universidad de Zaragoza
- Zaragoza
| | | | | | - Elinor Scott
- Biobased Chemistry and Technology
- Wageningen University
- Wageningen
- Netherlands
| | - Harry Bitter
- Biobased Chemistry and Technology
- Wageningen University
- Wageningen
- Netherlands
| | | | | |
Collapse
|