1
|
John J A, Samuel MS, Govarthanan M, Selvarajan E. A comprehensive review on strategic study of cellulase producing marine actinobacteria for biofuel applications. ENVIRONMENTAL RESEARCH 2022; 214:114018. [PMID: 35961544 DOI: 10.1016/j.envres.2022.114018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/12/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Every year, 180 billion tonnes of cellulose are produced by plants as waste biomass after the cultivation of the desired product. One of the smart and effective ways to utilize this biomass rather than burn it is to utilize the biomass to adequately meet the energy needs with the help of microbial cellulase that can catalytically convert the cellulose into simple sugar units. Marine actinobacteria is one of the plentiful gram-positive bacteria known for its industrial application as it can produce multienzyme cellulase with high thermal tolerance, pH stability and high resistant towards metal ions and salt concentration, along with other antimicrobial properties. Highly stable cellulase obtained from marine actinobacteria will convert the cellulose biomass into glucose, which is the precursor for biofuel production. This review will provide a comprehensive outlook of various strategic applications of cellulase from marine actinobacteria which can facilitate the breakdown of lignocellulosic biomass to bioenergy with respect to its characteristics based on the location/environment that the organism was collected and its screening strategies followed by adopted methodologies to mine the novel cellulase genome and enhance the production, thereby increasing the activity of cellulase continued by effective immobilization on novel substrates for the multiple usage of cellulase along with the industrial applications.
Collapse
Affiliation(s)
- Ashwini John J
- Department of Genetic Engineering, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603 203, Tamil Nadu, India
| | - Melvin S Samuel
- Department of Material Science and Engineering, University of Winsconsin-Milwaukee, Milwaukee, WI, USA
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea; Departrment of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India
| | - Ethiraj Selvarajan
- Department of Genetic Engineering, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603 203, Tamil Nadu, India.
| |
Collapse
|
2
|
Mawang CI, Azman AS, Fuad ASM, Ahamad M. Actinobacteria: An eco-friendly and promising technology for the bioaugmentation of contaminants. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 32:e00679. [PMID: 34660214 PMCID: PMC8503819 DOI: 10.1016/j.btre.2021.e00679] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 08/05/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022]
Abstract
Over the past two decades, various eco-friendly approaches utilizing microbial species to clean up contaminated environments have surfaced. In this aspect, actinobacteria have demonstrated their potential in contaminant degradation. The members of actinobacteria phylum exhibits a cosmopolitan distribution, which means that they can be found widely in both aquatic and terrestrial ecosystems. Actinobacteria play important ecological roles in the environment, such as degrading complex polymers, recycling compounds, and producing bioactive molecules. Hence, using actinobacteria to clean up contaminants is an attractive method in the field of biotechnology. This can be achieved through the green technology of bioaugmentation, whereby the degradative capacity of contaminated areas can be greatly improved through the introduction of specific microorganisms. This review describes actinobacteria as an eco-friendly and a promising technology for the bioaugmentation of contaminants, with focus on pesticides and heavy metals.
Collapse
Affiliation(s)
- Christina-Injan Mawang
- Acarology Unit, Infectious Disease Research Centre, Institute for Medical Research, Ministry of Health Malaysia, National Institutes of Health Complex, Setia Alam, Shah Alam, Selangor, 40170, Malaysia
| | - Adzzie-Shazleen Azman
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, 47500, Malaysia
| | - Aalina-Sakiinah Mohd Fuad
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia Kuantan Campus, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, Kuantan, Pahang 25200, Malaysia
| | - Mariana Ahamad
- Acarology Unit, Infectious Disease Research Centre, Institute for Medical Research, Ministry of Health Malaysia, National Institutes of Health Complex, Setia Alam, Shah Alam, Selangor, 40170, Malaysia
| |
Collapse
|
3
|
Recent advances in biotechnology for marine enzymes and molecules. Curr Opin Biotechnol 2021; 69:308-315. [PMID: 34116375 DOI: 10.1016/j.copbio.2021.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 12/21/2022]
Abstract
The marine environment is the most biologically and chemically diverse habitat on Earth, and provides numerous marine-derived products, including enzymes and molecules, for industrial and pharmaceutical applications. Marine biotechnology provides important biological resources from marine habitat conservation to applied science. In recent years, advances in techniques in interdisciplinary research fields, including metabolic engineering and synthetic biology have significantly improved the production of marine-derived commodities. In this review, we outline the recent progress in the use or marine enzymes and molecules in biotechnology, including newly discovered products, function optimization of enzymes, and production improvement of small molecules.
Collapse
|
4
|
Characterization of Actinomycetes Strains Isolated from the Intestinal Tract and Feces of the Larvae of the Longhorn Beetle Cerambyx welensii. Microorganisms 2020; 8:microorganisms8122013. [PMID: 33339339 PMCID: PMC7766275 DOI: 10.3390/microorganisms8122013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/04/2020] [Accepted: 12/14/2020] [Indexed: 01/06/2023] Open
Abstract
Actinomycetes constitute a large group of Gram-positive bacteria present in different habitats. One of these habitats involves the association of these bacteria with insects. In this work, we have studied twenty-four actinomycetes strains isolated from the intestinal tract and feces from larvae of the xylophagous coleopteran Cerambyx welensii and have shown that seventeen strains present hydrolytic activity of some of the following substrates: cellulose, hemicellulose, starch and proteins. Fourteen of the isolates produce antimicrobial molecules against the Gram-positive bacteria Micrococcus luteus. Analysis of seven strains led us to identify the production of a wide number of compounds including streptanoate, alpiniamide A, alteramides A and B, coproporphyrin III, deferoxamine, demethylenenocardamine, dihydropicromycin, nocardamine, picromycin, surugamides A, B, C, D and E, tirandamycins A and B, and valinomycin. A significant number of other compounds, whose molecular formulae are not included in the Dictionary of Natural Products (DNP), were also present in the extracts analyzed, which opens up the possibility of identifying new active antibiotics. Molecular identification of ten of the isolated bacteria determined that six of them belong to the genus Streptomyces, two of them are included in the genus Amycolatopsis and two in the genus Nocardiopsis.
Collapse
|
5
|
González V, Vargas-Straube MJ, Beys-da-Silva WO, Santi L, Valencia P, Beltrametti F, Cámara B. Enzyme Bioprospection of Marine-Derived Actinobacteria from the Chilean Coast and New Insight in the Mechanism of Keratin Degradation in Streptomyces sp. G11C. Mar Drugs 2020; 18:E537. [PMID: 33126528 PMCID: PMC7693968 DOI: 10.3390/md18110537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/13/2020] [Accepted: 10/17/2020] [Indexed: 01/10/2023] Open
Abstract
Marine actinobacteria are viewed as a promising source of enzymes with potential technological applications. They contribute to the turnover of complex biopolymers, such as pectin, lignocellulose, chitin, and keratin, being able to secrete a wide variety of extracellular enzymes. Among these, keratinases are a valuable alternative for recycling keratin-rich waste, which is generated in large quantities by the poultry industry. In this work, we explored the biocatalytic potential of 75 marine-derived actinobacterial strains, focusing mainly on the search for keratinases. A major part of the strains secreted industrially important enzymes, such as proteases, lipases, cellulases, amylases, and keratinases. Among these, we identified two streptomycete strains that presented great potential for recycling keratin wastes-Streptomyces sp. CHA1 and Streptomyces sp. G11C. Substrate concentration, incubation temperature, and, to a lesser extent, inoculum size were found to be important parameters that influenced the production of keratinolytic enzymes in both strains. In addition, proteomic analysis of culture broths from Streptomyces sp. G11C on turkey feathers showed a high abundance and diversity of peptidases, belonging mainly to the serine and metallo-superfamilies. Two proteases from families S08 and M06 were highly expressed. These results contributed to elucidate the mechanism of keratin degradation mediated by streptomycetes.
Collapse
Affiliation(s)
- Valentina González
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química y Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile; (V.G.); (M.J.V.-S.)
| | - María José Vargas-Straube
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química y Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile; (V.G.); (M.J.V.-S.)
| | - Walter O. Beys-da-Silva
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil; (W.O.B.-d.-S.); (L.S.)
| | - Lucélia Santi
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil; (W.O.B.-d.-S.); (L.S.)
| | - Pedro Valencia
- Laboratorio de Biocatálisis y Procesamiento de Alimentos, Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile;
| | | | - Beatriz Cámara
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química y Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile; (V.G.); (M.J.V.-S.)
| |
Collapse
|
6
|
|
7
|
Bibi F, Strobel GA, Naseer MI, Yasir M, Khalaf Al-Ghamdi AA, Azhar EI. Microbial Flora Associated with the Halophyte- Salsola imbricate and Its Biotechnical Potential. Front Microbiol 2018; 9:65. [PMID: 29445362 PMCID: PMC5797760 DOI: 10.3389/fmicb.2018.00065] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/11/2018] [Indexed: 11/17/2022] Open
Abstract
Halophytes are associated with the intertidal forest ecosystem of Saudi Arabia and seemingly have an immense potential for yielding useful and important natural products. In this study we have aimed to isolate and characterize the endophytic and rhizospheric bacterial communities from the halophyte, Salsola imbricata, In addition these bacterial strains were identified and selected strains were further studied for bioactive secondary metabolites. At least 168 rhizspheric and endophytic bacteria were isolated and of these 22 were active antagonists against the oomycetous fungal plant pathogens, Phytophthora capsici and Pythium ultimum. Active cultures were mainly identified with molecular techniques (16S r DNA) and this revealed 95.7–100% sequence similarities with relevant type strains. These microorgansims were grouped into four major classes: Actinobacteria, Firmicutes, β-Proteobacteria, and γ-Proteobacteria. Production of fungal cell wall lytic enzymes was detected mostly in members of Actinobacteria and Firmicutes. PCR screening for type I polyketide synthases (PKS-I), type II polyketide synthases (PKS-II) and nonribosomal peptide synthetases (NRPS) revealed 13 of the 22 strains (59%) were positive for at least one of these important biosynthetic genes that are known to be involved in the synthesis of important antibiotics. Four bacterial strains of Actinobacteria with potential antagonistic activity including two rhizobacteria, EA52 (Nocardiopsis sp.), EA58 (Pseudonocardia sp.) and two endophytic bacteria Streptomyces sp. (EA65) and Streptomyces sp. (EA67) were selected for secondary metabolite analyses using LC-MS. As a result, the presence of different bioactive compounds in the culture extracts was detected some of which are already reported for their diverse biological activities including antibiotics such as Sulfamethoxypyridazine, Sulfamerazine, and Dimetridazole. In conclusion, this study provides an insight into antagonistic bacterial population especially the Actinobacteria from S. imbricata, producing antifungal metabolites of medical significance and characterized taxonomically in future.
Collapse
Affiliation(s)
- Fehmida Bibi
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Gary A Strobel
- Department of plant sciences, Montana State University, Bozeman, MT, United States
| | - Muhammad I Naseer
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Yasir
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed A Khalaf Al-Ghamdi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Esam I Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|