1
|
Librizzi M, Martino C, Mauro M, Abruscato G, Arizza V, Vazzana M, Luparello C. Natural Anticancer Peptides from Marine Animal Species: Evidence from In Vitro Cell Model Systems. Cancers (Basel) 2023; 16:36. [PMID: 38201464 PMCID: PMC10777987 DOI: 10.3390/cancers16010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Anticancer peptides are short and structurally heterogeneous aminoacidic chains, which display selective cytotoxicity mostly against tumor cells, but not healthy cells, based on their different cell surface properties. Their anti-tumoral activity is carried out through interference with intracellular homeostasis, such as plasmalemma integrity, cell cycle control, enzymatic activities and mitochondrial functions, ultimately acting as angiogenesis-, drug resistance- and metastasis-inhibiting agents, immune stimulators, differentiation inducers and necrosis or extrinsic/intrinsic apoptosis promoters. The marine environment features an ever-growing level of biodiversity, and seas and oceans are poorly exploited mines in terms of natural products of biomedical interest. Adaptation processes to extreme and competitive environmental conditions led marine species to produce unique metabolites as a chemical strategy to allow inter-individual signalization and ensure survival against predators, infectious agents or UV radiation. These natural metabolites have found broad use in various applications in healthcare management, due to their anticancer, anti-angiogenic, anti-inflammatory and regeneration abilities. The aim of this review is to pick selected studies that report on the isolation of marine animal-derived peptides and the identification of their anticancer activity in in vitro cultures of cancer cells, and list them with respect to the taxonomical hierarchy of the source organism.
Collapse
Affiliation(s)
- Mariangela Librizzi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy; (M.L.); (C.M.); (M.M.); (V.A.); (M.V.)
| | - Chiara Martino
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy; (M.L.); (C.M.); (M.M.); (V.A.); (M.V.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Manuela Mauro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy; (M.L.); (C.M.); (M.M.); (V.A.); (M.V.)
| | - Giulia Abruscato
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy; (M.L.); (C.M.); (M.M.); (V.A.); (M.V.)
| | - Vincenzo Arizza
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy; (M.L.); (C.M.); (M.M.); (V.A.); (M.V.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Mirella Vazzana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy; (M.L.); (C.M.); (M.M.); (V.A.); (M.V.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Claudio Luparello
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy; (M.L.); (C.M.); (M.M.); (V.A.); (M.V.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
2
|
Alvarado-Ramírez L, Santiesteban-Romero B, Poss G, Sosa-Hernández JE, Iqbal HMN, Parra-Saldívar R, Bonaccorso AD, Melchor-Martínez EM. Sustainable production of biofuels and bioderivatives from aquaculture and marine waste. FRONTIERS IN CHEMICAL ENGINEERING 2023. [DOI: 10.3389/fceng.2022.1072761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The annual global fish production reached a record 178 million tonnes in 2020, which continues to increase. Today, 49% of the total fish is harvested from aquaculture, which is forecasted to reach 60% of the total fish produced by 2030. Considering that the wastes of fishing industries represent up to 75% of the whole organisms, the fish industry is generating a large amount of waste which is being neglected in most parts of the world. This negligence can be traced to the ridicule of the value of this resource as well as the many difficulties related to its valorisation. In addition, the massive expansion of the aquaculture industry is generating significant environmental consequences, including chemical and biological pollution, disease outbreaks that increase the fish mortality rate, unsustainable feeds, competition for coastal space, and an increase in the macroalgal blooms due to anthropogenic stressors, leading to a negative socio-economic and environmental impact. The establishment of integrated multi-trophic aquaculture (IMTA) has received increasing attention due to the environmental benefits of using waste products and transforming them into valuable products. There is a need to integrate and implement new technologies able to valorise the waste generated from the fish and aquaculture industry making the aquaculture sector and the fish industry more sustainable through the development of a circular economy scheme. This review wants to provide an overview of several approaches to valorise marine waste (e.g., dead fish, algae waste from marine and aquaculture, fish waste), by their transformation into biofuels (biomethane, biohydrogen, biodiesel, green diesel, bioethanol, or biomethanol) and recovering biomolecules such as proteins (collagen, fish hydrolysate protein), polysaccharides (chitosan, chitin, carrageenan, ulvan, alginate, fucoidan, and laminarin) and biosurfactants.
Collapse
|
3
|
Lu Q, Lu Y, Yang L. Challenging problems of applying microalgae for aquaculture environment protection and nutrition supplementation: A long road traveled and still a far way to go. Front Bioeng Biotechnol 2023; 11:1151440. [PMID: 36937758 PMCID: PMC10020703 DOI: 10.3389/fbioe.2023.1151440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Affiliation(s)
- Qian Lu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yujie Lu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- *Correspondence: Yujie Lu,
| | - Limin Yang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
4
|
Li Z, Du Z, Li H, Chen Y, Zheng M, Jiang Z, Du X, Ni H, Zhu Y. Characterisation of marine bacterium Microbulbifer sp. ALW1 with Laminaria japonica degradation capability. AMB Express 2022; 12:139. [DOI: 10.1186/s13568-022-01482-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/23/2022] [Indexed: 11/07/2022] Open
Abstract
AbstractMarine bacterium Microbulbifer sp. ALW1 was revealed to be able to effectively degrade Laminaria japonica thallus fragments into fine particles. Polysaccharide substrate specificity analysis indicated that ALW1 could produce extracellular alginate lyase, laminarinase, fucoidanase and cellulase. Based on alignment of the 16 S rRNA sequence with other reference relatives, ALW1 showed the closest relationship with Microbulbifer aggregans CCB-MM1T. The cell morphology and some basic physiological and biochemical parameters of ALW1 cells were characterised. ALW1 is a Gram-negative, rod- or oval-shaped, non-spore-forming and non-motile bacterium. The DNA–DNA relatedness values of ALW1 with type strains of M. gwangyangensis (JCM 17,800), M. aggregans (JCM 31,875), M. maritimus (JCM 12,187), M. okinawensis (JCM 16,147) and M. rhizosphaerae (DSM 28,920) were 28.9%, 43.3%, 41.2%, 35.4% and 45.6%, respectively. The major cell wall sugars of ALW1 were determined to be ribose and galactose, which differed from other closely related species. These characteristics indicated that ALW1 could be assigned to a separate species of the genus Microbulbifer. The complete genome of ALW1 contained one circular chromosome with 4,682,287 bp and a GC content of 56.86%. The putative encoded proteins were categorised based on their functional annotations. Phenotypic, physiological, biochemical and genomic characterisation will provide insights into the many potential industrial applications of Microbulbifer sp. ALW1.Key points.
Collapse
|
5
|
Venugopal V, Sasidharan A. Functional proteins through green refining of seafood side streams. Front Nutr 2022; 9:974447. [PMID: 36091241 PMCID: PMC9454818 DOI: 10.3389/fnut.2022.974447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/29/2022] [Indexed: 01/09/2023] Open
Abstract
Scarcity of nutritive protein is a major global problem, the severity of which is bound to increase with the rising population. The situation demands finding additional sources of proteins that can be both safe as well as acceptable to the consumer. Food waste, particularly from seafood is a plausible feedstock of proteins in this respect. Fishing operations result in appreciable amounts of bycatch having poor food value. In addition, commercial processing results in 50 to 60% of seafood as discards, which consist of shell, head, fileting frames, bones, viscera, fin, skin, roe, and others. Furthermore, voluminous amounts of protein-rich effluents are released during commercial seafood processing. While meat from the bycatch can be raw material for proteinous edible products, proteins from the process discards and effluents can be recovered through biorefining employing upcoming, environmental-friendly, low-cost green processes. Microbial or enzyme treatments release proteins bound to the seafood matrices. Physico-chemical processes such as ultrasound, pulse electric field, high hydrostatic pressure, green solvent extractions and others are available to recover proteins from the by-products. Cultivation of photosynthetic microalgae in nutrient media consisting of seafood side streams generates algal cell mass, a rich source of functional proteins. A zero-waste marine bio-refinery approach can help almost total recovery of proteins and other ingredients from the seafood side streams. The recovered proteins can have high nutritive value and valuable applications as nutraceuticals and food additives.
Collapse
|
6
|
Raja K, Kadirvel V, Subramaniyan T. Seaweeds, an aquatic plant-based protein for sustainable nutrition- a review. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
7
|
Effects of dietary Gracilaria persica on the intestinal microflora, thyroid hormones, and resistance against Aeromonas hydrophila in Persian sturgeon ( Acipenser persicus). ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract
Red seaweeds have several biomedical derivatives making them healthy additives for the aquaculture industry. Previously we reported enhanced growth performance, feed utilization, and immunity of Persian sturgeon treated with Gracilaria gracilis. Herein, we investigated the effects of G. gracilis on the intestinal microflora, thyroid hormones, and resistance against Aeromonas hydrophila in Persian sturgeon. Fish fed G. gracilis at 0, 2.5, 5, and 10 g/kg for eight weeks, then challenged with A. hydrophila for ten days. The results showed that the total bacterial count in the fish intestines had no meaningful differences among the groups of fish fed varying levels of G. persica (P˃0.05). Fish fed 10 g/kg of G. persica had a higher lactic acid bacteria (LAB) count than fish fed 0, 2.5, and 5 g/kg (P<0.05). Serum thyroid-stimulating hormone (TSH) showed higher levels in fish treated with 2.5 and 5 g/kg of G. persica than the other groups (P<0.05). Besides, fish fed 2.5 g/kg G. persica had higher thyroxine (T4) and triiodothyronine (T3) levels than the other groups (P<0.05). At the end of the challenge test, the highest mortality was seen in the fish fed the G. persica free diet. In summary, Persian sturgeon treated G. gracilis had improved intestinal microflora, thyroid hormones, and resistance against A. hydrophila.
Collapse
|
8
|
Lv S, Xie S, Liang Y, Xu L, Hu L, Li H, Mo H. Comprehensive lipidomic analysis of the lipids extracted from freshwater fish bones and crustacean shells. Food Sci Nutr 2022; 10:723-730. [PMID: 35311165 PMCID: PMC8907742 DOI: 10.1002/fsn3.2698] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 11/07/2022] Open
Abstract
A comprehensive lipidomic analysis of the lipids extracted from grass carp bones, black carp bones, shrimp shells, and crab shells was performed in this study. First, HPLC analysis revealed that the lipids extracted from shrimp and crab shells contained 60.65% and 77.25% of diacylglycerols, respectively. Second, GC-MS analysis identified 18 fatty acid species in the lipids extracted from fish bones and crustacean shells, in which polyunsaturated fatty acids (PUFAs) were highly enriched. PUFAs were present at 45.43% in the lipids extracted from shrimp shells. Notably, the lipids extracted from shrimp and crab shells contained a considerable amount of eicosapentaenoic acids and docosahexaenoic acids. Finally, multidimensional mass spectrometry-based shotgun lipidomics showed that various lipids including acetyl-L-carnitine, sphingomyelin (SM), lysophosphatidylcholine, and phosphatidylcholine (PC) were all identified in the lipid samples, but PC and SM were the most abundant. Specifically, the total content of PC in shrimp shells was as high as 6.145 mmol/g. More than 35 species of PC were found in all samples, which were more than other lipids. This study is expected to provide a scientific basis for the application of freshwater fish bones and crustacean shells in food, medicine, and other fields.
Collapse
Affiliation(s)
- Shuang Lv
- School of Food and Biological EngineeringShaanxi University of Science and TechnologyXi'anChina
- Shaanxi Agricultural Products Processing Technology Research InstituteXi'anChina
| | - Suya Xie
- School of Food and Biological EngineeringShaanxi University of Science and TechnologyXi'anChina
- Shaanxi Agricultural Products Processing Technology Research InstituteXi'anChina
| | - Yunxia Liang
- School of Food and Biological EngineeringShaanxi University of Science and TechnologyXi'anChina
- Shaanxi Agricultural Products Processing Technology Research InstituteXi'anChina
| | - Long Xu
- College of Food Science and TechnologyHenan Agricultural UniversityZhengzhouChina
| | - Liangbin Hu
- School of Food and Biological EngineeringShaanxi University of Science and TechnologyXi'anChina
- Shaanxi Agricultural Products Processing Technology Research InstituteXi'anChina
| | - Hongbo Li
- School of Food and Biological EngineeringShaanxi University of Science and TechnologyXi'anChina
- Shaanxi Agricultural Products Processing Technology Research InstituteXi'anChina
| | - Haizhen Mo
- School of Food and Biological EngineeringShaanxi University of Science and TechnologyXi'anChina
- Shaanxi Agricultural Products Processing Technology Research InstituteXi'anChina
| |
Collapse
|
9
|
López-Pedrouso M, Lorenzo JM, Varela Z, Fernández JÁ, Franco D. Finding Biomarkers in Antioxidant Molecular Mechanisms for Ensuring Food Safety of Bivalves Threatened by Marine Pollution. Antioxidants (Basel) 2022; 11:antiox11020369. [PMID: 35204251 PMCID: PMC8868406 DOI: 10.3390/antiox11020369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
Aquaculture production as an important source of protein for our diet is sure to continue in the coming years. However, marine pollution will also likely give rise to serious problems for the food safety of molluscs. Seafood is widely recognized for its high nutritional value in our diet, leading to major health benefits. However, the threat of marine pollution including heavy metals, persistent organic pollutants and other emerging pollutants is of ever-growing importance and seafood safety may not be guaranteed. New approaches for the search of biomarkers would help us to monitor pollutants and move towards a more global point of view; protocols for the aquaculture industry would also be improved. Rapid and accurate detection of food safety problems in bivalves could be carried out easily by protein biomarkers. Hence, proteomic technologies could be considered as a useful tool for the discovery of protein biomarkers as a first step to improve the protocols of seafood safety. It has been demonstrated that marine pollutants are altering the bivalve proteome, affecting many biological processes and molecular functions. The main response mechanism of bivalves in a polluted marine environment is based on the antioxidant defense system against oxidative stress. All these proteomic data provided from the literature suggest that alterations in oxidative stress due to marine pollution are closely linked to robust and confident biomarkers for seafood safety.
Collapse
Affiliation(s)
- María López-Pedrouso
- Departamento de Zooloxía, Xenética e Antropoloxía Física, Universidade de Santiago de Compostela, 15872 Santiago de Compostela, Spain;
| | - José M. Lorenzo
- Centro Tecnolóxico da Carne de Galicia, Rúa Galicia No. 4, Parque Tecnolóxico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
- Área de Tecnoloxía dos Alimentos, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain
| | - Zulema Varela
- CRETUS, Ecology Unit, Department of Functional Biology, Universidade de Santiago de Compostela, 15872 Santiago de Compostela, Spain; (Z.V.); (J.Á.F.)
| | - J. Ángel Fernández
- CRETUS, Ecology Unit, Department of Functional Biology, Universidade de Santiago de Compostela, 15872 Santiago de Compostela, Spain; (Z.V.); (J.Á.F.)
| | - Daniel Franco
- Centro Tecnolóxico da Carne de Galicia, Rúa Galicia No. 4, Parque Tecnolóxico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
- Correspondence:
| |
Collapse
|
10
|
Stepanova E, Lugovaya E. Macro- and microelements in some species of marine life from the Sea of Okhotsk. FOODS AND RAW MATERIALS 2021. [DOI: 10.21603/2308-4057-2021-2-302-309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction. Residents of northern regions have a diet low in essential macro- and microelements. The Sea of Okhotsk is an enormous source of fish and non-fish products. We aimed to determine mineral contents in marine fish, shellfish, and algae in order to assess if they could satisfy the daily requirement for these elements through fish and non-fish consumption.
Study objects and methods. Our study objects were saffron cod (Eleginus gracilis L.), blue-headed halibut (Reinhardtius hippoglossoides L.), commander squid (Berryteuthis magister L.), northern shrimp (Pandalus borealis L.), salted pink salmon caviar (Oncorhynchus gorbuscham L.), and kelp (Laminaria L.). The contents of 25 macro- and microelements were determined by atomic emission spectrometry and mass spectrometry with inductively coupled argon plasma.
Results and discussion. The absolute contents of macro- and microelements in the marine species were used to assess the proportion of the recommended daily requirement that they account for. Also, we performed a thorough comparative analysis of mineral quantities in the studied species of marine fish, pink salmon caviar, shellfish, and algae from the Sea of Okhotsk. Finally, we examined the elemental status of the coastal residents belonging to the “northern type” and identified their deficiencies of vital chemical elements.
Conclusion. Some chemical elements in the studied marine species from the Sea of Okhotsk (Magadan Region) satisfy over 100% of the daily human requirement for these minerals. Therefore, their products can be recommended as part of a northern diet in order to compensate for the deficiencies of certain minerals.
Collapse
Affiliation(s)
- Evgenia Stepanova
- Scientific Research Center “Arktika” Far Eastern Branch of the Academy of Sciences
| | - Elena Lugovaya
- Scientific Research Center “Arktika” Far Eastern Branch of the Academy of Sciences
| |
Collapse
|
11
|
Collagen-Containing Fish Sidestream-Derived Protein Hydrolysates Support Skin Repair via Chemokine Induction. Mar Drugs 2021; 19:md19070396. [PMID: 34356821 PMCID: PMC8303758 DOI: 10.3390/md19070396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/05/2021] [Accepted: 07/13/2021] [Indexed: 01/03/2023] Open
Abstract
Restoring homeostasis following tissue damage requires a dynamic and tightly orchestrated sequence of molecular and cellular events that ensure repair and healing. It is well established that nutrition directly affects skin homeostasis, while malnutrition causes impaired tissue healing. In this study, we utilized fish sidestream-derived protein hydrolysates including fish collagen as dietary supplements, and investigated their effect on the skin repair process using a murine model of cutaneous wound healing. We explored potential differences in wound closure and histological morphology between diet groups, and analyzed the expression and production of factors that participate in different stages of the repair process. Dietary supplementation with fish sidestream-derived collagen alone (Collagen), or in combination with a protein hydrolysate derived from salmon heads (HSH), resulted in accelerated healing. Chemical analysis of the tested extracts revealed that Collagen had the highest protein content and that HSH contained the great amount of zinc, known to support immune responses. Indeed, tissues from mice fed with collagen-containing supplements exhibited an increase in the expression levels of chemokines, important for the recruitment of immune cells into the damaged wound region. Moreover, expression of a potent angiogenic factor, vascular endothelial growth factor-A (VEGF-A), was elevated followed by enhanced collagen deposition. Our findings suggest that a 5%-supplemented diet with marine collagen-enriched supplements promotes tissue repair in the model of cutaneous wound healing, proposing a novel health-promoting use of fish sidestreams.
Collapse
|
12
|
Venugopal V. Valorization of Seafood Processing Discards: Bioconversion and Bio-Refinery Approaches. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.611835] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The seafood industry generates large volumes of waste. These include processing discards consisting of shell, head, bones intestine, fin, skin, voluminous amounts of wastewater discharged as effluents, and low-value under-utilized fish, which are caught as by-catch of commercial fishing operations. The discards, effluents, and by-catch are rich in nutrients including proteins, amino acids, lipids containing good proportions of polyunsaturated fatty acids (PUFA), carotenoids, and minerals. The seafood waste is, therefore, responsible for loss of nutrients and serious environmental hazards. It is important that the waste is subjected to secondary processing and valorization to address the problems. Although chemical processes are available for waste treatment, most of these processes have inherent weaknesses. Biological treatments, however, are environmentally friendly, safe, and cost-effective. Biological treatments are based on bioconversion processes, which help with the recovery of valuable ingredients from by-catch, processing discards, and effluents, without losing their inherent bioactivities. Major bioconversion processes make use of microbial fermentations or actions of exogenously added enzymes on the waste components. Recent developments in algal biotechnology offer novel processes for biotransformation of nutrients as single cell proteins, which can be used as feedstock for the recovery of valuable ingredients and also biofuel. Bioconversion options in conjunction with a bio-refinery approach have potential for eco-friendly and economical management of seafood waste that can support sustainable seafood production.
Collapse
|
13
|
Omega-3-Rich Oils from Marine Side Streams and Their Potential Application in Food. Mar Drugs 2021; 19:md19050233. [PMID: 33919462 PMCID: PMC8143521 DOI: 10.3390/md19050233] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/29/2022] Open
Abstract
Rapid population growth and increasing food demand have impacts on the environment due to the generation of residues, which could be managed using sustainable solutions such as the circular economy strategy (waste generated during food processing must be kept within the food chain). Reusing discarded fish remains is part of this management strategy, since they contain high-value ingredients and bioactive compounds that can be used for the development of nutraceuticals and functional foods. Fish side streams such as the head, liver, or skin or the cephalothorax, carapace, and tail from shellfish are important sources of oils rich in omega-3. In order to resolve the disadvantages associated with conventional methods, novel extraction techniques are being optimized to improve the quality and the oxidative stability of these high-value oils. Positive effects on cardiovascular and vision health, diabetes, cancer, anti-inflammatory and neuroprotective properties, and immune system improvement are among their recognized properties. Their incorporation into different model systems could contribute to the development of functional foods, with market benefits for consumers. These products improve the nutritional needs of specific population groups in a scenario where noncommunicable diseases and pandemic crises are responsible for several deaths worldwide.
Collapse
|