1
|
Yilmaz AS, Ozturk S, Salih B, Ayyala RS, Sahiner N. ESI-IM-MS characterization of cyclodextrin complexes and their chemically cross-linked alpha (α-), beta (β-) and gamma (γ-) cyclodextrin particles as promising drug delivery materials with improved bioavailability. Colloids Surf B Biointerfaces 2023; 230:113522. [PMID: 37657404 DOI: 10.1016/j.colsurfb.2023.113522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 09/03/2023]
Abstract
Cyclodextrins (CDs) are natural cyclic oligosaccharides with a relatively hydrophobic cavity and a hydrophilic outer surface. In this study, alpha (α-), beta (β-) and gamma (γ-) CD particles were prepared by directly using α-, β-, and γ-CDs as monomeric units and divinyl sulfone (DVS) as a crosslinker in a single-step via reverse micelle microemulsion crosslinking technique. Particles of p(α-CD), p(β-CD), and p(γ-CD) were perfectly spherical in sub- 10 µm size ranges. The prepared p(CD) particles at 1.0 mg/mL concentrations were found biocompatible with > 95 % cell viability against L929 fibroblasts. Furthermore, p(α-CD) and p(β-CD) particles were found non-hemolytic with < 2 % hemolysis ratios, whereas p(γ-CD) particles were found to be slightly hemolytic with its 2.1 ± 0.4 % hemolysis ratio at 1.0 mg/mL concentration. Furthermore, a toxic compound, Bisphenol A (BPA) and a highly antioxidant polyphenol, curcumin (CUR) complexation with α-, β-, and γ-CD molecules was investigated via Electrospray-Ion Mobility-Mass Spectrometry (ESI-IM-MS) and tandem mass spectrometry (MS/MS) analysis. It was determined that the most stable noncovalent complex was in the case of β-CD, but the complex stoichiometry was changed by the hydrophobic nature of the guest molecules. In addition, BPA and CUR were separately loaded into prepared p(CD) particles as active agents. The drug loading and release studies showed that p(CD) particles possess governable loading and releasing profiles.
Collapse
Affiliation(s)
- Aynur Sanem Yilmaz
- Department of Chemistry, Faculty of Sciences & Arts, and Nanoscience and Technology Research and Application Center (NANORAC), Canakkale Onsekiz Mart University Terzioglu Campus, Canakkale 17100, Turkey
| | - Serhat Ozturk
- Department of Chemistry, Faculty of Science, Hacettepe University, Beytepe Campus, Ankara 06800, Turkey
| | - Bekir Salih
- Department of Chemistry, Faculty of Science, Hacettepe University, Beytepe Campus, Ankara 06800, Turkey
| | - Ramesh S Ayyala
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida Eye Institute, 12901 Bruce B Down Blvd, MDC 21, Tampa, FL 33612, USA
| | - Nurettin Sahiner
- Department of Chemistry, Faculty of Sciences & Arts, and Nanoscience and Technology Research and Application Center (NANORAC), Canakkale Onsekiz Mart University Terzioglu Campus, Canakkale 17100, Turkey; Department of Ophthalmology, Morsani College of Medicine, University of South Florida Eye Institute, 12901 Bruce B Down Blvd, MDC 21, Tampa, FL 33612, USA; Department of Chemical & Biomedical Engineering, Materials Science and Engineering Program, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
2
|
Seyedzade Hashemi S, Khorshidian N, Mohammadi M. An insight to potential application of synbiotic edible films and coatings in food products. Front Nutr 2022; 9:875368. [PMID: 35967779 PMCID: PMC9363822 DOI: 10.3389/fnut.2022.875368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Edible films and coatings have gained significant consideration in recent years due to their low cost and decreasing environmental pollution. Several bioactive compounds can be incorporated into films and coatings, including antioxidants, antimicrobials, flavoring agents, colors, probiotics and prebiotics. The addition of probiotics to edible films and coatings is an alternative approach for direct application in food matrices that enhances their stability and functional properties. Also, it has been noted that the influence of probiotics on the film properties was dependent on the composition, biopolymer structure, and intermolecular interactions. Recently, the incorporation of probiotics along with prebiotic compounds such as inulin, starch, fructooligosaccharide, polydextrose and wheat dextrin has emerged as new bioactive packaging. The simultaneous application of probiotics and prebiotics improved the viability of probiotic strains and elevated their colonization in the intestinal tract and provided health benefits to humans. Moreover, prebiotics created a uniform and compact structure by filling the spaces within the polymer matrix and increased opacity of edible films. The effects of prebiotics on mechanical and barrier properties of edible films was dependent on the nature of prebiotic compounds. This review aims to discuss the concept of edible films and coatings, synbiotic, recent research on synbiotic edible films and coatings as well as their application in food products.
Collapse
Affiliation(s)
- Sahar Seyedzade Hashemi
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Khorshidian
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Mohammadi
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Echegaray N, Yegin S, Kumar M, Hassoun A, Bastianello Campagnol PC, Lorenzo JM. Application of oligosaccharides in meat processing and preservation. Crit Rev Food Sci Nutr 2022; 63:10947-10958. [PMID: 35648076 DOI: 10.1080/10408398.2022.2081963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In recent decades, consumer preference and attention to foodstuff presented as healthy and with desirable nutritional information, has increased significantly. In this field, the meat industry has a challenging task since meat and meat products have been related to various chronic diseases. Functional ingredients have emerged in response to the increasing demand for healthier and more nutritious foods. On this matter, oligosaccharides such as fructooligosaccharides (FOS), xylooligosaccharides (XOS), galactooligosaccharides (GOS), and chitooligosaccharides (COS) have been presented as suitable ingredients for the meat industry with the aim of obtaining healthier meat derivatives (e.g. with low fat or sugar content, reduced amount of additives, and desirable functional properties, etc.). However, studies considering application of such oligomers in the meat sector are scarce. In addition, a large number of issues remain to be solved related both to obtaining and characterizing the oligosaccharides available in the industry and to the effect that these ingredients have on the features of meat products (mainly physicochemical and sensory). The study of new oligosaccharides, the methodologies for obtaining them, and their application to new meat products should be promoted, as well as improving knowledge about their effects on the properties of functional meat foods.
Collapse
Affiliation(s)
- Noemí Echegaray
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
| | - Sirma Yegin
- Department of Food Engineering, Ege University, Izmir, Bornova, Turkey
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, India
| | - Abdo Hassoun
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France
- Syrian Academic Expertise (SAE), Gaziantep, Turkey
| | | | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, Ourense, Spain
| |
Collapse
|
4
|
Illippangama AU, Jayasena DD, Jo C, Mudannayake DC. Inulin as a functional ingredient and their applications in meat products. Carbohydr Polym 2022; 275:118706. [PMID: 34742431 DOI: 10.1016/j.carbpol.2021.118706] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/07/2021] [Accepted: 09/23/2021] [Indexed: 12/27/2022]
Abstract
Inulin, a fructan-type non-digestible carbohydrate, is a natural functional dietary fiber found in selected plants including chicory, garlic, onion, leeks and asparagus. Due to increasing popularity of inulin and rising awareness toward its low calorie value and prebiotic related health implications, consumers are becoming more conscious on consuming inulin incorporated foods. In this review, the scientific studies published in recent years regarding potential applications of inulin in meat products; and their effects on physicochemical and sensory properties, and health implications are discussed. Meat based functional foods with inulin can lead to enhance digestive health by reducing the risk of diseases like constipation, irritable bowel syndrome, inflammatory bowel disease and colorectal cancer. Inulin can be an interesting prebiotic ingredient in healthier meat formulations, apart from being a fat replacer and dietary fiber enhancer.
Collapse
Affiliation(s)
| | - Dinesh D Jayasena
- Department of Animal Science, Uva Wellassa University, Badulla 90000, Sri Lanka
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | | |
Collapse
|
5
|
The Extraction, Functionalities and Applications of Plant Polysaccharides in Fermented Foods: A Review. Foods 2021; 10:foods10123004. [PMID: 34945554 PMCID: PMC8701727 DOI: 10.3390/foods10123004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023] Open
Abstract
Plant polysaccharides, as prebiotics, fat substitutes, stabilizers, thickeners, gelling agents, thickeners and emulsifiers, have been immensely studied for improving the texture, taste and stability of fermented foods. However, their biological activities in fermented foods are not yet properly addressed in the literature. This review summarizes the classification, chemical structure, extraction and purification methods of plant polysaccharides, investigates their functionalities in fermented foods, especially the biological activities and health benefits. This review may provide references for the development of innovative fermented foods containing plant polysaccharides that are beneficial to health.
Collapse
|
6
|
Native Cyclodextrins and Their Derivatives as Potential Additives for Food Packaging: A Review. POLYSACCHARIDES 2021. [DOI: 10.3390/polysaccharides2040050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cyclodextrins (CDs) have been used by the pharmaceutical and food industries since the 1970s. Their cavities allow the accommodation of several hydrophobic molecules, leading to the formation of inclusion complexes (ICs) increasing the guest molecules’ stability, allowing their controlled release, enhancing their water solubility and biodisponibility. Due to these, CDs and their ICs have been proposed to be used as potential allies in food packaging, especially in active packaging. In this review, we present the many ways in which the CDs can be applied in food packaging, being incorporated into the polymer matrix or as a constituent of sachets and/or pads aiming for food preservation, as well as the diverse polymer matrices investigated. The different types of CDs, natives and derivatives, and the several types of compounds that can be used as guest molecules are also discussed.
Collapse
|
7
|
Rashid N, Ashraf I, Kumar R, Richa R. Enrichment via chia seeds to tackle hidden hunger: A review. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Ifra Ashraf
- College of Agricultural Engineering and Technology Sher‐e‐Kashmir University of Agricultural Sciences and Technology of Kashmir Shalimar Campus Srinagar India
| | - Rohitashw Kumar
- College of Agricultural Engineering and Technology Sher‐e‐Kashmir University of Agricultural Sciences and Technology of Kashmir Shalimar Campus Srinagar India
| | - Rishi Richa
- College of Agricultural Engineering and Technology Sher‐e‐Kashmir University of Agricultural Sciences and Technology of Kashmir Shalimar Campus Srinagar India
| |
Collapse
|