1
|
Sai Bharadwaj AVSL, Dev S, Zhuang J, Wang Y, Yoo CG, Jeon BH, Aggarwal S, Park SH, Kim TH. Review of chemical pretreatment of lignocellulosic biomass using low-liquid and low-chemical catalysts for effective bioconversion. BIORESOURCE TECHNOLOGY 2023; 368:128339. [PMID: 36400274 DOI: 10.1016/j.biortech.2022.128339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Chemical pretreatment of lignocellulosic biomass (LCB) is essential for effective biological conversion in subsequent steps to produce biofuels or biochemicals. For effective pretreatment, high lignin content and its recalcitrant nature of LCB are major factors influencing bioconversion, especially lignin is known to be effectively solubilized by alkaline, organic, and deep eutectic solvents, ionic liquids, while hemicellulose is effectively dissolved by various acid catalysts and organic solvents. Depending on the pretreatment method/catalyst used, different pretreatment process scheme should be applied with different amounts of catalyst and water inputs to achieve a satisfactory effect. In addition, the amount of processing water required in the following processes such as washing, catalyst recovery, and conditioning after pretreatment is critical factor for scale-up (commercialization). In this review, the amount of catalyst and/or water used, and the effect of pretreatment, properties of the products, and recovery of liquid are also discussed.
Collapse
Affiliation(s)
- A V S L Sai Bharadwaj
- Department of Materials Sciences and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Subhabrata Dev
- Water and Environmental Research Center (WERC), Institute of Northern Engineering (INE), University of Alaska Fairbanks (UAF), Fairbanks, AK 99775, USA
| | - Jingshun Zhuang
- Department of Chemical Engineering, State University of New York, College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Yunxuan Wang
- Department of Chemical Engineering, State University of New York, College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Chang Geun Yoo
- Department of Chemical Engineering, State University of New York, College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Srijan Aggarwal
- Civil, Geological, and Environmental Engineering, University of Alaska Fairbanks, College of Engineering and Mines, Fairbanks, AK 99775-5960, USA
| | - Seung Hyun Park
- Department of Materials Sciences and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Tae Hyun Kim
- Department of Materials Sciences and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea.
| |
Collapse
|
2
|
Investigation of Synergistic Effects and Kinetics on Co-Pyrolysis of Alternanthera philoxeroides and Waste Tires. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127101. [PMID: 35742352 PMCID: PMC9222625 DOI: 10.3390/ijerph19127101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022]
Abstract
A thermogravimetric analysis is used to analyze the thermal kinetics and investigate the synergistic effects between Alternanthera philoxeroides (AP) and waste tires (WTS) in a temperature range of 50-900 °C under three heating rates (15, 25, and 35 °C/min). Two model-free methods (FWO and KAS) and a model-fitting method (CR) were applied to calculate the activation energy. Results revealed that heating rates had no significant effect on the pyrolysis operation. The addition of WTS improved the thermal degradation of the samples as the samples had more than one stage during the main reaction period. A promoting synergistic effect was found in the blend 75A25WT and obtained the lowest activation energy among all the blends without a catalyst, while the blend 50A50WT exhibited an inhibiting effect. On the other hand, the addition of HZSM-5 accelerated the reaction time and obtained the lowest activation energy among all the blends without a catalyst. Furthermore, ΔW of 75A25WT+C was the lowest, indicating that the blend with a catalyst exhibited the strongest synergistic effect. This research confirmed that the addition of WTS improved the thermal parameters of the samples and clarified the capacity of HZSM-5 to reduce the activation energy.
Collapse
|
3
|
Morgan HM, Xie W, Liang J, Mao H, Lei H, Ruan R, Bu Q. A techno-economic evaluation of anaerobic biogas producing systems in developing countries. BIORESOURCE TECHNOLOGY 2018; 250:910-921. [PMID: 29246720 DOI: 10.1016/j.biortech.2017.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/03/2017] [Accepted: 12/06/2017] [Indexed: 06/07/2023]
Abstract
Biogas production has been the focus of many individuals in the developing world; there have been several investigations that focus on improving the production process and product quality. In the developing world the lack of advanced technology and capital has hindered the development of energy production. Renewable energy has the potential to improve the standard of living for most of the 196 countries which are classified as developing economies. One of the easiest renewable energy compounds that can be produced is biogas (bio-methane). Biogas can be produced from almost any source of biomass through the anaerobic respiration of micro-organisms. Low budget energy systems are reviewed in this article along with various feedstock sources. Adapted gas purification and storage systems are also reviewed, along with the possible economic, social, health and environmental benefits of its implementation.
Collapse
Affiliation(s)
- Hervan Marion Morgan
- School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, PR China
| | - Wei Xie
- School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, PR China
| | - Jianghui Liang
- School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, PR China
| | - Hanping Mao
- School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, PR China
| | - Hanwu Lei
- Bioproducts, Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA 99354-1671, USA
| | - Roger Ruan
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN 55108, USA
| | - Quan Bu
- School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, PR China.
| |
Collapse
|