1
|
Eryilmaz S, Bagdatli E. Structural characterization and keto-enol tautomerization of 4-substituted pyrazolone derivatives with DFT approach. J Mol Graph Model 2024; 131:108814. [PMID: 38968767 DOI: 10.1016/j.jmgm.2024.108814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/19/2024] [Accepted: 06/17/2024] [Indexed: 07/07/2024]
Abstract
The synthesis of two pyrazolone derivative compounds, PYR-I(4-Acetyl-1-(4-chlorophenyl)-3-isopropyl-1H-pyrazol-5(4H)-one) and PYR-II1-(4-Chlorophenyl))-3-isopropyl-5-oxo-4,5-5-dihydro-1H-pyrazole-4-carbaldehyde, their characterization by FT-IR, NMR, UV-Vis and GC-MS techniques, and the evaluation of the keto-enol tautomerization process of the structures along with the DFT approach and spectral data were reported in this paper. Spectral findings indicated that PYR-I was stable at the keto state. The IR spectrum recorded in solid form showed that the PYR-II structure was stable in the enol state, while the NMR spectrum in the solution medium showed that it was stable in the keto state. DFT-based analyses were realized with the B3LYP hybrid functional and the 6-311++G(d,p) basis set. The modelled keto, transition and enol state molecular geometries of structures were optimized in the gas phase and different solvent media and the total energy and dipole moment values were investigated at the specified theoretical level. The possible keto-enol tautomerism mechanism of the structures was evaluated through some thermodynamic parameters such as the difference in free Gibbs energy (ΔG), enthalpy (ΔH), entropy (ΔS), and predictive tautomeric equilibrium constants (Keq), acidity constants (pKa) and percentages of tautomers at 298.15 K and 1 atm pressure. The results of these analyses based on the DFT approach indicated that the keto-enol tautomer equilibrium heavily favours the keto form for PYR-I and the enol form for PYR-II in all cases. Moreover, natural bond orbital (NBO) analysis was performed for the tautomers, and the chemical reactivity profiles of the most stable tautomers were examined with the values of frontier molecular orbital energy and some reactivity descriptors.
Collapse
Affiliation(s)
- Serpil Eryilmaz
- Department of Physics, Faculty of Arts and Sciences, Amasya University, 05100, Amasya, Turkey.
| | - Emine Bagdatli
- Department of Chemistry, Faculty of Arts and Sciences, Ordu University, 52200, Ordu, Turkey
| |
Collapse
|
2
|
Semenov VA, Larina LI. Stereochemical and Computational NMR Survey of 1,2,3-Triazoles: in Search of the Original Tauto-Conformers. J Phys Chem A 2024; 128:3231-3240. [PMID: 38512800 DOI: 10.1021/acs.jpca.3c08217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The conformational analysis of nine functionalized 1,2,3-triazoles was carried out by the correlation of calculated and experimental high-level nuclear magnetic resonance (NMR) chemical shifts. In solution, the studied triazoles are in exchange dynamic equilibrium caused by their prototropic tautomerism of the NH-proton. The experimentally unresolved NMR signals were assigned for most of the compounds. A more thorough survey was conducted for 4-t-butyl-1,2,3-triazole-5-carbaldehyde oxime. The analysis performed within the framework of the DP4+ formalism completely confirmed the hypothesis of the predominance of the 2H-tautomer. Thus, the methodology for estimating stereochemical structures in the absence of some experimental data allowed the most stable conformations for dynamic systems with different tautomeric ratios to be reliably identified.
Collapse
Affiliation(s)
- Valentin A Semenov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky st. 1, Irkutsk 664033, Russia
| | - Lyudmila I Larina
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky st. 1, Irkutsk 664033, Russia
| |
Collapse
|
3
|
García-López J, Khomenko DM, Zakharchenko BV, Doroshchuk RO, Starova VS, Iglesias MJ, Lampeka RD, López-Ortiz F. Solvent- and functional-group-assisted tautomerism of 3-alkyl substituted 5-(2-pyridyl)-1,2,4-triazoles in DMSO-water. Org Biomol Chem 2023; 21:9443-9458. [PMID: 37997179 DOI: 10.1039/d3ob01651j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
The tautomerism of a series of 5-alkyl substituted 3-(2-pyridyl)-1,2,4-triazoles in DMSO-d6-containing water has been investigated by 1H, 13C and 15N NMR spectroscopy. The populations of the three possible regioisomers in the tautomeric equilibrium (A [3-alkyl-5-(2-pyridyl)-1H], B [5-alkyl-3-(2-pyridyl)-1H] and C [5-alkyl-3-(2-pyridyl)-4H]) were determined. Isomers A (17-40%) and B (54-79%) are the major components and their ratio is insensitive to the substitution pattern, except for the unsubstituted and the methoxymethyl substituted derivatives. The isomer C (3-5%) has been fully characterised for the first time by NMR spectroscopy. Activation energies of tautomerisation (14.74-16.78 kcal mol-1) were determined by EXSY experiments, which also supported the involvement of water in the tautomerisation. Substituent effects on the 15N chemical shifts are relatively small. The DFT study of the tautomerism in DMSO-water showed that both A/B and B/C interconversions are assisted by the pyridine substituent and catalysed by solvent molecules. The NH-A/NH-B tautomerisation takes place via a relayed quadruple proton transfer mediated by three water molecules in the hydrogen-bonded cyclic substructure of a triazole·4H2O complex. The equilibrium B ⇄ C involves three steps: NH-B transfer to the pyridyl nitrogen mediated by a water molecule in a 1 : 1 cyclic complex, rotamerisation to bring the pyridinium NH close to N4 of the triazole catalysed by complexation to a DMSO molecule and transfer of the NH from the pyridinium donor to the N4 acceptor via a 1 : 1 complex with a bridging water molecule. This mechanism of 1,3-prototropic shift in triazoles is unprecedented in the literature.
Collapse
Affiliation(s)
- Jesús García-López
- Área de Química Orgánica, Research Centre CIAIMBITAL, Universidad de Almería, Carretera de Sacramento s/n, Almería, 04120, Spain.
| | - Dmytro M Khomenko
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street, 64/13, Kyiv 01601, Ukraine.
| | - Borys V Zakharchenko
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street, 64/13, Kyiv 01601, Ukraine.
| | - Roman O Doroshchuk
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street, 64/13, Kyiv 01601, Ukraine.
| | - Viktoriia S Starova
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street, 64/13, Kyiv 01601, Ukraine.
| | - María José Iglesias
- Área de Química Orgánica, Research Centre CIAIMBITAL, Universidad de Almería, Carretera de Sacramento s/n, Almería, 04120, Spain.
| | - Rostyslav D Lampeka
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street, 64/13, Kyiv 01601, Ukraine.
| | - Fernando López-Ortiz
- Área de Química Orgánica, Research Centre CIAIMBITAL, Universidad de Almería, Carretera de Sacramento s/n, Almería, 04120, Spain.
| |
Collapse
|
4
|
Singh J, Staples RJ, Shreeve JM. Manipulating nitration and stabilization to achieve high energy. SCIENCE ADVANCES 2023; 9:eadk3754. [PMID: 37967187 PMCID: PMC10651134 DOI: 10.1126/sciadv.adk3754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/13/2023] [Indexed: 11/17/2023]
Abstract
Nitro groups have played a central and decisive role in the development of the most powerful known energetic materials. Highly nitrated compounds are potential oxidizing agents, which could replace the environmentally hazardous used materials such as ammonium perchlorate. The scarcity of azole compounds with a large number of nitro groups is likely due to their inherent thermal instability and the limited number of ring sites available for bond formation. Now, the formation of the first azole molecule bonded to seven nitro groups, 4-nitro-3,5-bis(trinitromethyl)-1H-pyrazole (4), by the stepwise nitration of 3,5-dimethyl-1H-pyrazole is reported. Compound 4 exhibits exceptional physicochemical properties with a positive oxygen balance (OBCO2 = 13.62%) and an extremely high calculated density (2.04 g cm-3 at 100 K). This is impressively high for a C, H, N, O compound. This work is a giant step forward to highly nitrated and dense azoles and will accelerate further exploration in this challenging field.
Collapse
Affiliation(s)
- Jatinder Singh
- Department of Chemistry, University of Idaho, Moscow, ID 83844-2343 USA
| | - Richard J. Staples
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
5
|
Alajarin M, Cutillas-Font G, Lopez-Leonardo C, Orenes RA, Marin-Luna M, Pastor A. Intramolecular Cyclization of Azido-Isocyanides Triggered by the Azide Anion: An Experimental and Computational Study. J Org Chem 2023; 88:8658-8668. [PMID: 37338459 PMCID: PMC10861138 DOI: 10.1021/acs.joc.3c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Indexed: 06/21/2023]
Abstract
This work describes the unprecedented intramolecular cyclization occurring in a set of α-azido-ω-isocyanides in the presence of catalytic amounts of sodium azide. These species yield the tricyclic cyanamides [1,2,3]triazolo[1,5-a]quinoxaline-5(4H)-carbonitriles, whereas in the presence of an excess of the same reagent, the azido-isocyanides convert into the respective C-substituted tetrazoles through a [3 + 2] cycloaddition between the cyano group of the intermediate cyanamides and the azide anion. The formation of tricyclic cyanamides has been examined by experimental and computational means. The computational study discloses the intermediacy of a long-lived N-cyanoamide anion, detected by NMR monitoring of the experiments, subsequently converting into the final cyanamide in the rate-determining step. The chemical behavior of these azido-isocyanides endowed with an aryl-triazolyl linker has been compared with that of a structurally identical azido-cyanide isomer, experiencing a conventional intramolecular [3 + 2] cycloaddition between its azido and cyanide functionalities. The synthetic procedures described herein constitute metal-free approaches to novel complex heterocyclic systems, such as [1,2,3]triazolo[1,5-a]quinoxalines and 9H-benzo[f]tetrazolo[1,5-d][1,2,3]triazolo[1,5-a][1,4]diazepines.
Collapse
Affiliation(s)
- Mateo Alajarin
- Departamento
de Química Orgánica, Facultad de Química, Regional
Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| | - Guillermo Cutillas-Font
- Departamento
de Química Orgánica, Facultad de Química, Regional
Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| | - Carmen Lopez-Leonardo
- Departamento
de Química Orgánica, Facultad de Química, Regional
Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| | | | - Marta Marin-Luna
- Departamento
de Química Orgánica, Facultad de Química, Regional
Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| | - Aurelia Pastor
- Departamento
de Química Orgánica, Facultad de Química, Regional
Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| |
Collapse
|
6
|
Larina L. C- and N-Phosphorylated Enamines-An Avenue to Heterocycles: NMR Spectroscopy. Int J Mol Sci 2023; 24:ijms24119646. [PMID: 37298598 DOI: 10.3390/ijms24119646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023] Open
Abstract
The review presents extensive data (from the works of the author and literature) on the structure of C- and N-chlorophosphorylated enamines and the related heterocycles obtained by multipulse multinuclear 1H, 13C, and 31P NMR spectroscopy. The use of phosphorus pentachloride as a phosphorylating agent for functional enamines enables the synthesis of various C- and N-phosphorylated products that are heterocyclized to form various promising nitrogen- and phosphorus-containing heterocyclic systems. 31P NMR spectroscopy is the most convenient, reliable and unambiguous method for the study and identification of organophosphorus compounds with different coordination numbers of the phosphorus atom, as well as for the determination of their Z- and E-isomeric forms. An alteration of the coordination number of the phosphorus atom in the phosphorylated compounds from 3 to 6 leads to a drastic screening of the 31P nucleus from about +200 to -300 ppm. The unique structural features of nitrogen-phosphorus-containing heterocyclic compounds are discussed.
Collapse
Affiliation(s)
- Lyudmila Larina
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia
| |
Collapse
|
7
|
Larina LI, Albanov AI, Zelinskiy SN, Annenkov VV, Rusakova IL. Acrylamide derivatives: A dynamic nuclear magnetic resonance study. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:277-283. [PMID: 36606331 DOI: 10.1002/mrc.5331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/27/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Substituted acrylamides have found an extensive application in organic and medical chemistry; therefore, it is very important to get insight into their features such as electronic structure, spectral properties, and stereochemical transformations. A correct interpretation of the chemical behavior and biological activity of these heteroatomic systems is impossible without knowledge of the structure of stereodynamic forms and factors determining their relative stability. The structure and peculiarities of stereodynamic behavior of substituted acrylamides and their model compounds were studied by dynamic and multinuclear 1 H, 13 C, and 15 N nuclear magnetic resonance (NMR) spectroscopy in CDCl3 and DMSO-d6 solution. It has been established that acrylamides in solution are realized as Z- and E-isomers, with the E-rotamer being somewhat predominant. The obtained experimental values of the free activation energy of rotamers vary within 15-17 kcal/mol, depending on the stereochemical structure of the molecule. 15 N NMR spectroscopy is the most reliable and fastest method for determining the structural and stereochemical features of nitrogen-containing compounds.
Collapse
Affiliation(s)
- Lyudmila I Larina
- A.E. Favorsky Irkutsk Institute of Chemistry, Russian Academy of Sciences, Irkutsk, Russian Federation
| | - Alexander I Albanov
- A.E. Favorsky Irkutsk Institute of Chemistry, Russian Academy of Sciences, Irkutsk, Russian Federation
| | | | - Vadim V Annenkov
- Limnological Institute, Russian Academy of Sciences, Irkutsk, Russian Federation
| | - Irina L Rusakova
- A.E. Favorsky Irkutsk Institute of Chemistry, Russian Academy of Sciences, Irkutsk, Russian Federation
| |
Collapse
|
8
|
Melnikov IN, Kiselev VG, Dalinger IL, Starosotnikov AM, Muravyev NV, Pivkina AN. Thermochemistry, Tautomerism, and Thermal Stability of 5,7-Dinitrobenzotriazoles. Int J Mol Sci 2023; 24:ijms24065330. [PMID: 36982405 PMCID: PMC10049112 DOI: 10.3390/ijms24065330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/09/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Nitro derivatives of benzotriazoles are safe energetic materials with remarkable thermal stability. In the present study, we report on the kinetics and mechanism of thermal decomposition for 5,7-dinitrobenzotriazole (DBT) and 4-amino-5,7-dinitrobenzotriazole (ADBT). The pressure differential scanning calorimetry was employed to study the decomposition kinetics of DBT experimentally because the measurements under atmospheric pressure are disturbed by competing evaporation. The thermolysis of DBT in the melt is described by a kinetic scheme with two global reactions. The first stage is a strong autocatalytic process that includes the first-order reaction (Ea1I = 173.9 ± 0.9 kJ mol−1, log(A1I/s−1) = 12.82 ± 0.09) and the catalytic reaction of the second order with Ea2I = 136.5 ± 0.8 kJ mol−1, log(A2I/s−1) = 11.04 ± 0.07. The experimental study was complemented by predictive quantum chemical calculations (DLPNO-CCSD(T)). The calculations reveal that the 1H tautomer is the most energetically preferable form for both DBT and ADBT. Theory suggests the same decomposition mechanisms for DBT and ADBT, with the most favorable channels being nitro-nitrite isomerization and C–NO2 bond cleavage. The former channel has lower activation barriers (267 and 276 kJ mol−1 for DBT and ADBT, respectively) and dominates at lower temperatures. At the same time, due to the higher preexponential factor, the radical bond cleavage, with reaction enthalpies of 298 and 320 kJ mol−1, dominates in the experimental temperature range for both DBT and ADBT. In line with the theoretical predictions of C–NO2 bond energies, ADBT is more thermally stable than DBT. We also determined a reliable and mutually consistent set of thermochemical values for DBT and ADBT by combining the theoretically calculated (W1-F12 multilevel procedure) gas-phase enthalpies of formation and experimentally measured sublimation enthalpies.
Collapse
Affiliation(s)
- Igor N. Melnikov
- Semenov Federal Research Center for Chemical Physics RAS, 4 Kosygina Str., 119991 Moscow, Russia
| | - Vitaly G. Kiselev
- Semenov Federal Research Center for Chemical Physics RAS, 4 Kosygina Str., 119991 Moscow, Russia
- Physics Department, Novosibirsk State University, 1 Pirogova Str., 630090 Novosibirsk, Russia
- Institute of Chemical Kinetics and Combustion SB RAS, 3 Institutskaya Str., 630090 Novosibirsk, Russia
| | - Igor L. Dalinger
- Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Ave., 119991 Moscow, Russia
| | | | - Nikita V. Muravyev
- Semenov Federal Research Center for Chemical Physics RAS, 4 Kosygina Str., 119991 Moscow, Russia
- Correspondence: ; Tel.: +7-499-137-8203
| | - Alla N. Pivkina
- Semenov Federal Research Center for Chemical Physics RAS, 4 Kosygina Str., 119991 Moscow, Russia
| |
Collapse
|
9
|
Bharatam PV, Valanju OR, Wani AA, Dhaked DK. Importance of tautomerism in drugs. Drug Discov Today 2023; 28:103494. [PMID: 36681235 DOI: 10.1016/j.drudis.2023.103494] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 12/08/2022] [Accepted: 01/13/2023] [Indexed: 01/20/2023]
Abstract
Tautomerism is an important phenomenon exhibited by many drugs. As we discuss in this review, identifying the different tautomers of drugs and exploring their importance in the mechanisms of drug action are integral components of current drug discovery. Nuclear magnetic resonance (NMR), infrared (IR), ultraviolet (UV), Raman, and terahertz spectroscopic techniques, as well as X-ray diffraction, are useful for exploring drug tautomerism. Quantum chemical methods, in association with pharmacoinformatics tools, are being used to evaluate tautomeric preferences in terms of energy effects. Desmotropy (i.e., tautomeric polymorphism) of the drugs is particularly important in drug delivery studies.
Collapse
Affiliation(s)
- Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India.
| | - Omkar R Valanju
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Aabid A Wani
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Devendra K Dhaked
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, West Bengal 700054, India
| |
Collapse
|
10
|
Organophosphorus Azoles Incorporating a Tetra-, Penta-, and Hexacoordinated Phosphorus Atom: NMR Spectroscopy and Quantum Chemistry. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020669. [PMID: 36677725 PMCID: PMC9862086 DOI: 10.3390/molecules28020669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
The review presents extensive data (from the author's work and the literature) on the stereochemical structure of functionalized organophosphorus azoles (pyrroles, pyrazoles, imidazoles and benzazoles) and related compounds, using multinuclear 1H, 13C, 31P NMR spectroscopy and quantum chemistry. 31P NMR spectroscopy, combined with high-level quantum-chemical calculations, is the most convenient and reliable approach to studying tetra-, penta-, and hexacoordinated phosphorus atoms of phosphorylated N-vinylazoles and evaluating their Z/E isomerization.
Collapse
|
11
|
13C-NMR Chemical Shifts in 1,3-Benzazoles as a Tautomeric Ratio Criterion. Molecules 2022; 27:molecules27196268. [PMID: 36234805 PMCID: PMC9570581 DOI: 10.3390/molecules27196268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/14/2022] [Accepted: 09/18/2022] [Indexed: 11/17/2022] Open
Abstract
Benzimidazole is an important heterocyclic fragment, present in many biologically active compounds with a great variety of therapeutic purposes. Most of the benzimidazole activities are explained through the existence of 1,3-tautomeric equilibrium. As the binding affinity of each tautomer to a protein target depends on an established bioactive conformation, the effect of tautomers on the ligand protein binding mechanism is determinant. In this work, we searched and analyzed a series of reported 13C-NMR spectra of benzazoles and benzazolidine-2-thiones with the purpose of estimating their tautomeric equilibrium. Herein, several approaches to determine this problem are presented, which makes it a good initial introduction to the non-expert reader. This chemical shift difference and C4/C7 signals of benzimidazolidine-2-thione and 1-methyl-2-thiomethylbenzimidazole as references were used in this work to quantitatively calculate, in solution, the pyrrole–pyridine tautomeric ratio in equilibrium. The analysis will help researchers to correctly assign the chemical shifts of benzimidazoles and to calculate their intracyclic or exocyclic tautomeric ratio as well as mesomeric proportion in benzimidazoles.
Collapse
|
12
|
Aleksanyan AG, Hakobyan RM, Shahkhatuni AG, Shahkhatuni AA, Attaryan HS. Direct demonstration of tautomeric nature of 4‐bromo‐3(5)‐methylpyrazoles. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- A. G. Aleksanyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of NAS RA Yerevan Armenia
| | - R. M. Hakobyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of NAS RA Yerevan Armenia
| | - A. G. Shahkhatuni
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of NAS RA Yerevan Armenia
| | - A. A. Shahkhatuni
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of NAS RA Yerevan Armenia
| | - H. S. Attaryan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of NAS RA Yerevan Armenia
| |
Collapse
|
13
|
Quantum-chemical study of organic reaction mechanisms. XI.*1 Biologically active 4-substituted 1,2,4-triazoles from diformylhydrazine and aminophenols. Struct Chem 2022. [DOI: 10.1007/s11224-022-01969-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
The Structure of Biologically Active Functionalized Azoles: NMR Spectroscopy and Quantum Chemistry. MAGNETOCHEMISTRY 2022. [DOI: 10.3390/magnetochemistry8050052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This review summarizes the data on the stereochemical structure of functionalized azoles (pyrazoles, imidazoles, triazoles, thiazoles, and benzazoles) and related compounds obtained by multipulse and multinuclear 1H, 13C, 15N NMR spectroscopy and quantum chemistry. The stereochemistry of functionalized azoles is a challenging topic of theoretical research, as the correct interpretation of their chemical behavior and biological activity depends on understanding the factors that determine the stereochemical features and relative stability of their tautomers. NMR spectroscopy, in combination with quantum chemical calculations, is the most convenient and reliable approach to the evaluation of the stereochemical behavior of, in particular, nitrogen-containing heteroaromatic and heterocyclic compounds. Over the last decade, 15N NMR spectroscopy has become almost an express method for the determination of the structure of nitrogen-containing heterocycles.
Collapse
|
15
|
Singh J, Staples RJ, Shreeve JM. Pushing the Limit of Nitro Groups on a Pyrazole Ring with Energy-Stability Balance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61357-61364. [PMID: 34920662 DOI: 10.1021/acsami.1c21510] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polynitro compounds exhibit high density and good oxygen balance, which are desirable for energetic material applications, but their syntheses are often very challenging. Now, the design and syntheses of a new three-dimensional (3D) energetic metal-organic framework (EMOF) and high-energy-density materials (HEDMs) with good thermal stabilities and detonation properties based on a polynitro pyrazole are reported. Dipotassium 3,5-bis(dinitromethyl)-4-nitro-1H-pyrazole (5) exhibits a 3D EMOF structure with good thermal stability (202 °C), a high density of 2.15 g cm-3 at 100 K (2.10 g cm-3 at 298 K) in combination with superior detonation performance (Dv = 7965 m s-1, P = 29.3 GPa). Dihydrazinium 3,5-bis(dinitromethyl)-4-nitro-1H-pyrazole (7) exhibits a good density of 1.88 g cm-3 at 100 K (1.83 g cm-3 at 298 K) and superior thermal stability (218 °C), owing to the presence of 3D hydrogen-bonding networks. Its detonation velocity (8931 m s-1) and detonation pressure (35.9 GPa) are considerably superior to those of 1,3,5-trinitro-1,3,5-triazine (RDX). The results highlight the syntheses of a 3D EMOF (5) and HEDM (7) with five nitro groups as potential energetic materials.
Collapse
Affiliation(s)
- Jatinder Singh
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| | - Richard J Staples
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jean'ne M Shreeve
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| |
Collapse
|
16
|
Atomistic mechanisms of the tautomerization of the G·C base pairs through the proton transfer: quantum-chemical survey. J Mol Model 2021; 27:367. [PMID: 34855024 DOI: 10.1007/s00894-021-04988-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/23/2021] [Indexed: 10/19/2022]
Abstract
This study is devoted to the investigation of the G·C*tO2(WC)↔G*NH3·C*t(WC), G·C*O2(WC)↔G*NH3·C*(WC) and G*·C*O2(WC)↔G*NH3·C(wWC)↓ tautomerization reactions occurring through the proton transfer, obtained at the MP2/6-311++G(2df,pd)//B3LYP/6-311++G(d,p) level of theory in gas phase under normal conditions ('WC' means base pair in Watson-Crick configuration, T=298.15 K). These reactions lead to the formation of the G*NH3·C*t(WC), G*NH3·C*(WC) and G*NH3·C(wWC)↓ base pairs by the participation of the G*NH3 base with NH3 group. Gibbs free energies of activation for these reactions are 6.43, 11.00 and 1.63 kcal·mol-1, respectively. All of these tautomerization reactions are dipole active. Finally, we believe that these non-dissociative processes, which are tightly connected with the tautomeric transformations of the G·C base pairs, play an outstanding role in supporting of the spatial structure of the DNA and RNA molecules with various functional purposes.
Collapse
|
17
|
Tang Y, Huang W, Chinnam AK, Singh J, Staples RJ, Shreeve JM. Energetic Tricyclic Polynitropyrazole and Its Salts: Proton-Locking Effect of Guanidium Cations. Inorg Chem 2021; 60:8339-8345. [PMID: 34014642 DOI: 10.1021/acs.inorgchem.1c01202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An axisymmetric polynitro-pyrazole molecule, 3,5-di(3,5-dinitropyrazol-4-yl)]-4-nitro-1H-pyrazole (5), and its salts (6-12) were prepared and fully characterized. These compounds not only show promising energetic properties but also show a unique tautomeric switch via combining different cations with the axisymmetric compound (5). Its salts (6-9) remain axisymmetric when the cations are potassium, ammonium, or amino-1,2,4-triazolium. However, when the cations are guanidiums, the salts (10-12) dramatically become asymmetric owing to the fixed proton. The introduction of guanidium cations breaks the tautomeric equilibrium by blocking the prototropic transformations and results in the switch-off effect to tautomerism. The structural constraints of 1H NMR and 13C NMR spectra provide strong evidence for the unusual structural constraint phenomenon. These stabilized asymmetric tautomers are very important from the point of molecular recognition, and this research may promote further developments in synthetic and isolation methodologies for novel bioactive pyrazole-based compounds.
Collapse
Affiliation(s)
- Yongxing Tang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.,Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| | - Wei Huang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ajay Kumar Chinnam
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| | - Jatinder Singh
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| | - Richard J Staples
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jean'ne M Shreeve
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| |
Collapse
|
18
|
Sigalov MV, Shainyan BA, Chipanina NN, Oznobikhina LP, Sterkhova IV. 2-(1H-diazol-2-ylmethylene)indane-1-ones and 2-(1H-diazol-2-ylmethylene)-1H-indene-1,3(2H)-diones: Photoisomerization and hydrogen-bonding-induced association. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Stereochemistry and tautomerism of silicon-containing 1,2,3-triazole: ab initio and NMR study. Struct Chem 2020. [DOI: 10.1007/s11224-020-01570-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Chirkina E, Larina L, Komarova T. Quantum-chemical study of organic reaction mechanisms. IX. The interaction of benzoylacetylene with dithio- and diselenomalonamides. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Secrieru A, O’Neill PM, Cristiano MLS. Revisiting the Structure and Chemistry of 3(5)-Substituted Pyrazoles. Molecules 2019; 25:molecules25010042. [PMID: 31877672 PMCID: PMC6982847 DOI: 10.3390/molecules25010042] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/13/2019] [Accepted: 12/19/2019] [Indexed: 11/16/2022] Open
Abstract
Pyrazoles are known as versatile scaffolds in organic synthesis and medicinal chemistry, often used as starting materials for the preparation of more complex heterocyclic systems with relevance in the pharmaceutical field. Pyrazoles are also interesting compounds from a structural viewpoint, mainly because they exhibit tautomerism. This phenomenon may influence their reactivity, with possible impact on the synthetic strategies where pyrazoles take part, as well as on the biological activities of targets bearing a pyrazole moiety, since a change in structure translates into changes in properties. Investigations of the structure of pyrazoles that unravel the tautomeric and conformational preferences are therefore of upmost relevance. 3(5)-Aminopyrazoles are largely explored as precursors in the synthesis of condensed heterocyclic systems, namely pyrazolo[1,5-a]pyrimidines. However, the information available in the literature concerning the structure and chemistry of 3(5)-aminopyrazoles is scarce and disperse. We provide a revision of data on the present subject, based on investigations using theoretical and experimental methods, together with the applications of the compounds in synthesis. It is expected that the combined information will contribute to a deeper understanding of structure/reactivity relationships in this class of heterocycles, with a positive impact in the design of synthetic methods, where they take part.
Collapse
Affiliation(s)
- Alina Secrieru
- Center of Marine Sciences, CCMAR, Gambelas Campus, University of Algarve, UAlg, 8005-139 Faro, Portugal;
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK;
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, FCT, Gambelas Campus, University of Algarve, UAlg, 8005-139 Faro, Portugal
| | | | - Maria Lurdes Santos Cristiano
- Center of Marine Sciences, CCMAR, Gambelas Campus, University of Algarve, UAlg, 8005-139 Faro, Portugal;
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, FCT, Gambelas Campus, University of Algarve, UAlg, 8005-139 Faro, Portugal
- Correspondence: ; Tel.: +351-289-800-953
| |
Collapse
|
22
|
Synthesis and NMR spectroscopic assignment of chlorinated benzimidazole-2-thione derivatives. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Ibnaouf K, Hussein R, Elkhair H, Elzupir A. Experimental and theoretical study of the structure, frontier molecular orbital, tautomerism and spectral analysis of 3-(p-substituted phenyl)-5-phenyl-1H-pyrazole. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Nuclear Quadrupole Resonance Spectroscopy: Tautomerism and Structure of Functional Azoles. CRYSTALS 2019. [DOI: 10.3390/cryst9070366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Nuclear Quadrupole Resonance spectroscopy data of functionalized azoles (imidazoles, triazoles and corresponding benzazoles) are reviewed and critically discussed. The possibility of studying the tautomerism of azoles by the NQR method is considered.
Collapse
|
25
|
Semenov VA, Samultsev DO, Krivdin LB. DFT computational schemes for 15 N NMR chemical shifts of the condensed nitrogen-containing heterocycles. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2019; 57:346-358. [PMID: 30769377 DOI: 10.1002/mrc.4851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/08/2019] [Accepted: 02/12/2019] [Indexed: 06/09/2023]
Abstract
A systematic density functional theory (DFT) study of the accuracy factors (functionals, basis sets, and solvent effects) for the computation of 15 N NMR chemical shifts has been performed in the series of condensed nitrogen-containing heterocycles. The behavior of the most representative functionals was examined based on the benchmark calculations of 15 N NMR chemical shifts in the reference set of compounds. It was found that the best agreement with experiment was achieved with OLYP functional in combination with aug-pcS-3(N)//pc-2 locally dense basis set scheme providing mean absolute error of 5.2 ppm in the range of about 300 ppm. Taking into account solvent effects was performed within a general Tomasi's polarizable continuum model scheme. It was also found that computationally demanding supermolecular solvation model computations essentially improved some "difficult" cases, as was illustrated with phenanthroline dissolved in methanol. Based on the performed calculations, some 200 unknown 15 N NMR chemical shifts were predicted with a high level of confidence for about 50 real-life condensed nitrogen-containing heterocycles, which could serve as a practical guide in structural elucidation of this class of compounds.
Collapse
Affiliation(s)
- Valentin A Semenov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Dmitry O Samultsev
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Leonid B Krivdin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| |
Collapse
|
26
|
Deev SL, Khalymbadzha IA, Shestakova TS, Charushin VN, Chupakhin ON. 15N labeling and analysis of 13C–15N and 1H–15N couplings in studies of the structures and chemical transformations of nitrogen heterocycles. RSC Adv 2019; 9:26856-26879. [PMID: 35528595 PMCID: PMC9070671 DOI: 10.1039/c9ra04825a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/19/2019] [Indexed: 11/21/2022] Open
Abstract
This review provides a generalization of effective examples of 15N labeling followed by an analysis of JCN and JHN couplings in solution as a tool to study the structural aspects and pathways of chemical transformations in nitrogen heterocycles.
Collapse
Affiliation(s)
- Sergey L. Deev
- Ural Federal University
- 620002 Yekaterinburg
- Russian Federation
- I. Ya. Postovsky Institute of Organic Synthesis
- 620219 Yekaterinburg
| | | | | | - Valery N. Charushin
- Ural Federal University
- 620002 Yekaterinburg
- Russian Federation
- I. Ya. Postovsky Institute of Organic Synthesis
- 620219 Yekaterinburg
| | - Oleg N. Chupakhin
- Ural Federal University
- 620002 Yekaterinburg
- Russian Federation
- I. Ya. Postovsky Institute of Organic Synthesis
- 620219 Yekaterinburg
| |
Collapse
|