Li RR, Hoffmann MR. Theoretical Calculations of the 242 nm Absorption of Propargyl Radical.
J Phys Chem A 2021;
125:8595-8602. [PMID:
34570514 DOI:
10.1021/acs.jpca.1c05672]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The propargyl radical, the most stable isomer of neutral C3H3, is important in combustion reactions, and a number of spectroscopic and reaction dynamics studies have been performed over the years. However, theoretical calculations have never been able to find a state that can generate strong absorption around 242 nm as seen in experiments. In this study, we calculated the low-lying electronic energy levels of the propargyl radical using the highly accurate multireference configuration interaction singles and doubles method with triples and quadruples treated perturbatively [denoted as MRCISD(TQ)]. Calculations indicate that this absorption can be attributed to a Franck-Condon-allowed electronic transition from the ground 2B1 state to the Rydberg-like excited state 12A1. Further insight into the behavior of the multireference perturbative theory methods, GVVPT2 and GVVPT3, on a very challenging system are also obtained.
Collapse