1
|
Yaffe ZA, Ding S, Sung K, Chohan V, Marchitto L, Doepker L, Ralph D, Nduati R, Matsen FA, Finzi A, Overbaugh J. Reconstruction of a polyclonal ADCC antibody repertoire from an HIV-1 non-transmitting mother. iScience 2023; 26:106762. [PMID: 37216090 PMCID: PMC10196594 DOI: 10.1016/j.isci.2023.106762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/24/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Human natural history and vaccine studies support a protective role of antibody dependent cellular cytotoxicity (ADCC) activity against many infectious diseases. One setting where this has consistently been observed is in HIV-1 vertical transmission, where passively acquired ADCC activity in HIV-exposed infants has correlated with reduced acquisition risk and reduced pathogenesis in HIV+ infants. However, the characteristics of HIV-specific antibodies comprising a maternal plasma ADCC response are not well understood. Here, we reconstructed monoclonal antibodies (mAbs) from memory B cells from late pregnancy in mother MG540, who did not transmit HIV to her infant despite several high-risk factors. Twenty mAbs representing 14 clonal families were reconstructed, which mediated ADCC and recognized multiple HIV Envelope epitopes. In experiments using Fc-defective variants, only combinations of several mAbs accounted for the majority of plasma ADCC of MG540 and her infant. We present these mAbs as evidence of a polyclonal repertoire with potent HIV-directed ADCC activity.
Collapse
Affiliation(s)
- Zak A. Yaffe
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Shilei Ding
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Kevin Sung
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Vrasha Chohan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Lorie Marchitto
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Laura Doepker
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Duncan Ralph
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Ruth Nduati
- Department of Paediatrics and Child Health, University of Nairobi, Kenyatta National Hospital, Nairobi, Kenya
| | - Frederick A. Matsen
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
2
|
Barrows BM, Krebs SJ, Jian N, Zemil M, Slike BM, Dussupt V, Tran U, Mendez-Rivera L, Chang D, O’Sullivan AM, Mann B, Sanders-Buell E, Shubin Z, Creegan M, Paquin-Proulx D, Ehrenberg P, Laurence-Chenine A, Srithanaviboonchai K, Thomas R, Eller MA, Ferrari G, Robb M, Rao V, Tovanabutra S, Polonis VR, Wieczorek L. Fc receptor engagement of HIV-1 Env-specific antibodies in mothers and infants predicts reduced vertical transmission. Front Immunol 2022; 13:1051501. [PMID: 36578481 PMCID: PMC9791209 DOI: 10.3389/fimmu.2022.1051501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction Infants acquire maternal antibodies by Fc receptor transcytosis across the placenta during pregnancy. Fc receptors are expressed on immune cells and are important for activation of effector cell functions. Methods In this study, we evaluated Fc receptor engagement and ADCC activity of plasma binding antibodies from human immunodeficiency virus-1 (HIV) -infected mothers and to identify factors that may contribute to protection from HIV vertical transmission. Results HIV-specific binding and Fc receptor engagement of plasma antibodies varied between mothers by transmission status and infants by infection status. Non-transmitting (NT) mothers and HIV-uninfected infants had antibodies with higher neonatal Fc receptor (FcRn) and FcγR engagement, as compared to transmitting (T) mothers and HIV+ infants, respectively. A significant inverse correlation between plasma antibody FcRn and FcγR engagement was observed for T mothers, but not NT mothers. Conversely, a significant direct correlation was observed between plasma antibody FcRn and FcγR engagement for HIV- infants, but not for HIV+ infants. Consequently, we observed significantly higher plasma antibody ADCC potency and breadth in HIV- infants, as compared to HIV+ infants. However, no differences in overall ADCC potency and breadth were observed between mothers. FcRn-engagement of HIV-specific antibodies in both mothers and infants predicted a lack of vertical transmission of HIV. Discussion This study indicates that HIV-uninfected infants acquire HIV-specific antibodies with greater Fc receptor engagement and thus, greater ADCC capacity.
Collapse
Affiliation(s)
- Brittani M. Barrows
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Department of Biology, The Catholic University of America, Washington, DC, United States
| | - Shelly J. Krebs
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Ningbo Jian
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Michelle Zemil
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Bonnie M. Slike
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Vincent Dussupt
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Ursula Tran
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Letzibeth Mendez-Rivera
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - David Chang
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Anne Marie O’Sullivan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Brendan Mann
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Eric Sanders-Buell
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Zhanna Shubin
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Matt Creegan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Dominic Paquin-Proulx
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Philip Ehrenberg
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Agnes Laurence-Chenine
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | | | - Rasmi Thomas
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Michael A. Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Guido Ferrari
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Merlin Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Venigalla Rao
- Department of Biology, The Catholic University of America, Washington, DC, United States
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Victoria R. Polonis
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Lindsay Wieczorek
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| |
Collapse
|
3
|
Habibzadeh F, Yadollahie M, Simi A. Use of Oral Polio Vaccine and the Global Incidence of Mother-to-Child Human Immunodeficiency Virus Transmission. Front Public Health 2022; 10:878298. [PMID: 35812500 PMCID: PMC9261940 DOI: 10.3389/fpubh.2022.878298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundMother-to-child transmission (MTCT) of human immunodeficiency virus (HIV) is an important global health issue. We hypothesized that the live attenuated poliovirus existing in oral polio vaccine (OPV) may protect uninfected neonates born to HIV-positive mothers through the stimulation of innate immune system.ObjectiveTo test the hypothesis that countries using OPV have a lower MTCT rate (due to postnatal protection provided by the vaccine) compared with those using only inactivated polio vaccine (IPV).MethodsIn an ecological study, the incidence of HIV/AIDS in children aged <1 year (IncHIV1), considered a surrogate index for MTCT rate, was compared between countries using OPV vs. IPV. The aggregated population data were retrieved for 204 countries from the Global Burden of Disease (GBD 2019) Collaborative Network website, “Our World in Data” website, the World Bank website, and the WHO Global Polio Eradication Initiative (GPEI). We used a negative binomial regression model with IncHIV1 as the dependent variable and the prevalence of HIV/AIDS in women aged 15–49 years (PrevHIV), antiretroviral therapy (ART) coverage, human development index (HDI), and the type of vaccine used in each country as independent variables. Multivariate imputation by chained equations was used to treat missing values. Analyses were performed for both the original dataset (with missing values) and the five imputed datasets.ResultsIncHIV1 and PrevHIV were available for all 204 countries; vaccine type, 194 countries; HDI, 182 countries; and ART coverage, 133 countries. One-hundred and twenty-nine countries in the original dataset had complete data for all the above-mentioned variables; the imputed datasets had complete data for all 204 countries. The results obtained from the analysis of the original dataset had no overall difference with the pooled results obtained from the analysis of the five imputed datasets. Countries with higher HDI mainly use IPV; those with lower HDI commonly use OPV. PrevHIV, HDI, and the type of vaccine were independent predictors of IncHIV1. Use of OPV compared to IPV, was independently associated with an average decrease of 17% in IncHIV1 at the median HDI of 0.75. The protection provided by OPV increased in countries with lower HDI.ConclusionsUse of OPV compared with IPV, was independently associated with lower MTCT rate.
Collapse
Affiliation(s)
- Farrokh Habibzadeh
- Global Virus Network, Middle East Region, Shiraz, Iran
- *Correspondence: Farrokh Habibzadeh
| | | | | |
Collapse
|
4
|
Yaffe ZA, Naiman NE, Slyker J, Wines BD, Richardson BA, Hogarth PM, Bosire R, Farquhar C, Ngacha DM, Nduati R, John-Stewart G, Overbaugh J. Improved HIV-positive infant survival is correlated with high levels of HIV-specific ADCC activity in multiple cohorts. Cell Rep Med 2021; 2:100254. [PMID: 33948582 PMCID: PMC8080236 DOI: 10.1016/j.xcrm.2021.100254] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/27/2021] [Accepted: 03/25/2021] [Indexed: 02/04/2023]
Abstract
Defining immune responses that protect humans against diverse HIV strains has been elusive. Studying correlates of protection from mother-to-child transmission provides a benchmark for HIV vaccine protection because passively transferred HIV antibodies are present during infant exposure to HIV through breast milk. A previous study by our group illustrated that passively acquired antibody-dependent cellular cytotoxicity (ADCC) activity is associated with improved infant survival whereas neutralization is not. Here, we show, in another cohort and with two effector measures, that passively acquired ADCC antibodies correlate with infant survival. In combined analyses of data from both cohorts, there are highly statistically significant associations between higher infant survival and passively acquired ADCC levels (p = 0.029) as well as dimeric FcγRIIa (p = 0.002) or dimeric FcγRIIIa binding (p < 0.001). These results suggest that natural killer (NK) cell- and monocyte antibody-mediated effector functions may contribute to the observed survival benefit and support a role of pre-existing ADCC-mediating antibodies in clinical outcome.
Collapse
Affiliation(s)
- Zak A. Yaffe
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Nicole E. Naiman
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Jennifer Slyker
- Department of Global Health, University of Washington, 325 9 Avenue, Seattle, WA 98104, USA
- Department of Epidemiology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Bruce D. Wines
- Immune Therapies Laboratory, Burnet Institute, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - Barbra A. Richardson
- Department of Global Health, University of Washington, 325 9 Avenue, Seattle, WA 98104, USA
- Department of Biostatistics, University of Washington, 1705 NE Pacific Street, Seattle, WA 98195, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
| | - P. Mark Hogarth
- Immune Therapies Laboratory, Burnet Institute, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - Rose Bosire
- Centre for Public Health Research, Kenya Medical Research Institute, 20752-00202 Nairobi, Kenya
| | - Carey Farquhar
- Department of Global Health, University of Washington, 325 9 Avenue, Seattle, WA 98104, USA
- Department of Epidemiology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
- Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Dorothy Mbori Ngacha
- HIV Section, United Nations Children’s Fund, 3 United Nations Plaza, New York, NY 10017, USA
- Department of Paediatrics and Child Health, University of Nairobi, Kenyatta National Hospital, Nairobi, Kenya
| | - Ruth Nduati
- Department of Paediatrics and Child Health, University of Nairobi, Kenyatta National Hospital, Nairobi, Kenya
| | - Grace John-Stewart
- Department of Global Health, University of Washington, 325 9 Avenue, Seattle, WA 98104, USA
- Department of Epidemiology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
- Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
- Department of Pediatrics, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
| |
Collapse
|
5
|
Van de Perre P, Goga A, Ngandu N, Nagot N, Moodley D, King R, Molès JP, Mosqueira B, Chirinda W, Scarlatti G, Tylleskär T, Dabis F, Gray G. Eliminating postnatal HIV transmission in high incidence areas: need for complementary biomedical interventions. Lancet 2021; 397:1316-1324. [PMID: 33812490 DOI: 10.1016/s0140-6736(21)00570-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/06/2020] [Accepted: 10/02/2020] [Indexed: 11/24/2022]
Abstract
The rate of mother-to-child transmission (MTCT) of HIV from breastfeeding is increasing relative to other causes of MTCT. Early effective preconception and antenatal antiretroviral therapy (ART) reduces intrauterine and intrapartum MTCT, whereas maternal post-partum HIV acquisition, untreated maternal HIV, and suboptimal postnatal maternal ART adherence increase the risk of MTCT through breastfeeding. Although the absolute number of cases of MTCT acquired through breastfeeding is decreasing, the rate of decrease is less than the decrease in intrauterine and intrapartum MTCT. Unless current strategies are universally applied, they might not be sufficient to eliminate MTCT due to breastfeeding. Urgent action is needed to evaluate and implement additional preventive biomedical strategies in high HIV prevalence and incidence settings to eliminate MTCT from breastfeeding. Preventive strategies include: pre-exposure prophylaxis in breastfeeding women who have an increased risk of acquiring HIV; postnatal reinforcement strategies, such as maternal retesting for HIV, maternal care reinforcement, and prophylaxis in infants exposed to HIV via breastmilk; and active (vaccine) or passive immunoprophylaxis with long-acting broadly neutralising antibodies.
Collapse
Affiliation(s)
- Philippe Van de Perre
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, University of Montpellier, Etablissement Français du Sang, Antilles University, CHU Montpellier, Montpellier, France.
| | - Ameena Goga
- South African Medical Research Council, Cape Town, South Africa; Department of Paediatrics and Child Health, University of Pretoria, Pretoria, South Africa
| | - Nobubelo Ngandu
- South African Medical Research Council, Cape Town, South Africa
| | - Nicolas Nagot
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, University of Montpellier, Etablissement Français du Sang, Antilles University, CHU Montpellier, Montpellier, France
| | - Dhayendre Moodley
- Centre for AIDS Research in South Africa, and Department of Obstetrics and Gynaecology, School of Clinical Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Rachel King
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, University of Montpellier, Etablissement Français du Sang, Antilles University, CHU Montpellier, Montpellier, France; School of Medicine, University of California, San Francisco, CA, USA
| | - Jean-Pierre Molès
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, University of Montpellier, Etablissement Français du Sang, Antilles University, CHU Montpellier, Montpellier, France
| | - Beatriz Mosqueira
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, University of Montpellier, Etablissement Français du Sang, Antilles University, CHU Montpellier, Montpellier, France
| | | | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milano, Italy
| | | | - François Dabis
- Agence Nationale de Recherche sur le Sida et les Hépatites Virales (ANRS), Paris, France; Bordeaux Population Health, INSERM U 1219, ISPED, Université de Bordeaux, Bordeaux, France
| | - Glenda Gray
- South African Medical Research Council, Cape Town, South Africa
| |
Collapse
|
6
|
Atyeo C, Alter G. The multifaceted roles of breast milk antibodies. Cell 2021; 184:1486-1499. [PMID: 33740451 DOI: 10.1016/j.cell.2021.02.031] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/07/2021] [Accepted: 02/12/2021] [Indexed: 12/20/2022]
Abstract
Neonates are born with an immature immune system and rely on the transfer of immunity from their mothers. Maternal antibodies are transferred via the placenta and breast milk. Although the role of placentally transferred immunoglobulin G (IgG) is established, less is known about the selection of antibodies transferred via breast milk and the mechanisms by which they provide protection against neonatal disease. Evidence suggests that breast milk antibodies play multifaceted roles, preventing infection and supporting the selection of commensals and tolerizing immunity during infancy. Here, we discuss emerging data related to the importance of breast milk antibodies in neonatal immunity and development.
Collapse
Affiliation(s)
- Caroline Atyeo
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; PhD Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.
| |
Collapse
|
7
|
Wieczorek L, Peachman K, Adams DJ, Barrows B, Molnar S, Schoen J, Dawson P, Bryant C, Chenine AL, Sanders-Buell E, Srithanaviboonchai K, Pathipvanich P, Michael NL, Robb ML, Tovanabutra S, Rao M, Polonis VR. Evaluation of HIV-1 neutralizing and binding antibodies in maternal-infant transmission in Thailand. Virology 2020; 548:152-159. [PMID: 32838936 DOI: 10.1016/j.virol.2020.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 11/25/2022]
Abstract
Despite anti-retroviral therapy (ART) interventions for HIV+ pregnant mothers, over 43,000 perinatal infections occur yearly. Understanding risk factors that lead to mother-to-child transmission (MTCT) of HIV are critical. We evaluated maternal and infant plasma binding and neutralizing antibody responses in a drug-naïve, CRF01_AE infected MTCT cohort from Thailand to determine associations with transmission risk. Env V3-specific IgG and neutralizing antibody responses were significantly higher in HIV- infants, as compared to HIV+ infants. In fact, infant plasma neutralizing antibodies significantly associated with non-transmission. Conversely, increased maternal Env V3-specific IgG and neutralizing antibody responses were significantly associated with increased transmission risk, after controlling for maternal viral load. Our results highlight the importance of evaluating both maternal and infant humoral immune responses to better understand mechanisms of protection, as selective placental antibody transport may have a role in MTCT. This study further emphasizes the complex role of Env-specific antibodies in MTCT of CRF01_AE HIV.
Collapse
Affiliation(s)
- Lindsay Wieczorek
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Kristina Peachman
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Daniel J Adams
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA; Department of Pediatrics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Brittani Barrows
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Sebastian Molnar
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Jesse Schoen
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Peter Dawson
- The Emmes Corporation, 401 North Washington Street Suite 700, Rockville, MD, 20850, USA
| | - Chris Bryant
- The Emmes Corporation, 401 North Washington Street Suite 700, Rockville, MD, 20850, USA
| | - Agnès-Laurence Chenine
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Eric Sanders-Buell
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA
| | | | - Panita Pathipvanich
- Chiang Mai University, 239 Huaykaew Road, Suthep Mueang Chiang Mai District, Chiang Mai, 50200, Thailand
| | - Nelson L Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Merlin L Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Mangala Rao
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA.
| | - Victoria R Polonis
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA.
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW To present the data that suggest that antibodies to HIV may prevent HIV-1 infection. RECENT FINDINGS Many human monoclonal broadly neutralizing antibodies (bnAbs) have been isolated over the last decade. Numerous experiments of passive immunization in nonhuman primate models have allowed to accumulate strong evidences that bnAbs, opposed to nonneutralizing antibodies, are the best candidates to prevent HIV-1 infection. bnAbs counteract HIV-1 by both blocking the virus at the portal of entry and clearing rapidly viral foci established at distance after dissemination of the virus following infection. Cocktails of bnAbs or modified bi/trispecific antibodies will be necessary to counter the large and evolving antigenic diversity of the HIV-1 species. Two large multicenter phase IIb clinical trials have been initiated. Even if they are not conducted with the most recent and most potent bnAb, the results which are expected in 2022 will inform us on the real potency of bnAbs at preventing HIV-1 acquisition in the real life. SUMMARY If these trials demonstrate the efficacy of bnAbs, they will open the trail toward new strategies for preexposure prophylaxis, eventually postexposure prophylaxis and prevention of mother-to-child transmission.
Collapse
|
9
|
Wang G, Lu C, Qin S, Wei W, Lai J, Jiang J, Liang B, Zhou O, Han J, Yang Y, Ye L, Liang H, Ning C. 90-90-90 cascade analysis on reported CLHIV infected by mother-to-child transmission in Guangxi, China: a modeling study. Sci Rep 2020; 10:5295. [PMID: 32210333 PMCID: PMC7093517 DOI: 10.1038/s41598-020-62281-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 03/11/2020] [Indexed: 11/21/2022] Open
Abstract
The prevalence of HIV in Guangxi was very high, and there were many children living with HIV (CLHIV) because of larger baseline of pregnant women infected by HIV. It is necessary for children to explore the status of antiretroviral therapy (ART) on different initial CD4 counts in children with HIV infected by mother-to-child transmission (MTCT) in Guangxi and to evaluate the progress towards the 90-90-90 targets proposed by UNAIDS/WHO. Based on a retrospective observational cohort of children with HIV infected from the Guangxi Center for Disease Prevention and Control (CDC), the variables of all patients included viral loads, CD4 counts, laboratory results and WHO clinical staging of HIV/AIDS were collected. Several indicators were defined before analyzed: (1) diagnosis of MTCT: infants born to HIV-positive mothers who tested positive for HIV twice before 18 months; (2) ART initiation: the children who were enrolled in the treatment cohort and were still having HIV monitoring as of 6 months before date censored and (3) viral suppression: a recently viral load measurement that was less than 1000 copies per milliliter. The number of CLHIV in Guangxi was projected by using the estimates of the national HIV/AIDS prevalence from China CDC. An Autoregressive Integrated Moving Average (ARIMA) model and the Holt Exponential Smoothing (ES) model were used to predict the number of CLHIV, the diagnosed CLHIV, the diagnosed CLHIV receiving ART and the number of them achieving viral suppression, in 2019 and 2021, respectively. In this 14-year HIV/AIDS treatment cohort, 807 children who were HIV infected by MTCT were enrolled. The ARIMA and Holt ES models showed that by the end of 2019, 82.71% of all CLHIV in Guangxi knew their HIV status, 84.50% of those diagnosed had initiated ART, and 85.68% of those on ART had durable viral suppression. By the end of 2021, 93.51% of all CLHIV in Guangxi will know their HIV status, 84.28% of those diagnosed will have initiated antiretroviral therapy, and 85.83% of those on ART will have durable viral suppression. Therefore, in 2021, Guangxi fails to achieve the WHO/UNAIDS 90-90-90 targets for CLHIV, and there is still a wide time interval between the first HIV-positive diagnosis and ART initiation. National free antiretroviral treatment program (NFATP) requires strong enforcement to reduce the prevalence of later chronic diseases and complications.
Collapse
Affiliation(s)
- Gang Wang
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Life Science Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chunyan Lu
- Guangxi Center for Disease Prevention and Control, Nanning, 530021, Guangxi, China
| | - Shanfang Qin
- Longtan Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, 545005, Guangxi, China
| | - Wudi Wei
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Nursing College, Guangxi Medical University, Nanning, 530021, Guangxi, China
- School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jingzhen Lai
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Life Science Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Junjun Jiang
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, 530021, Guangxi, China
- School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Bingyu Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, 530021, Guangxi, China
- School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Oulu Zhou
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, 530021, Guangxi, China
- School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jing Han
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Life Science Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yao Yang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, 530021, Guangxi, China
- School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Li Ye
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Life Science Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
- School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Hao Liang
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Life Science Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Chuanyi Ning
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Life Science Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Nursing College, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
10
|
Naiman NE, Slyker J, Richardson BA, John-Stewart G, Nduati R, Overbaugh JM. Antibody-dependent cellular cytotoxicity targeting CD4-inducible epitopes predicts mortality in HIV-infected infants. EBioMedicine 2020; 47:257-268. [PMID: 31501077 PMCID: PMC6796543 DOI: 10.1016/j.ebiom.2019.08.072] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/26/2019] [Accepted: 08/29/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Antibody-dependent cellular cytotoxicity (ADCC) has been associated with improved infant outcome in mother-to-child transmission (MTCT) of HIV-1. Epitopes of these ADCC-mediating antibodies remain unidentified. CD4-inducible (CD4i) epitopes on gp120 are common ADCC targets in natural infection and vaccination. We tested whether CD4i epitope-specific ADCC mediated by maternal antibodies or passively-acquired antibodies in infants is associated with reduced MTCT and improved infant survival. METHODS We used variants of CD4i cluster A-specific antibodies, A32 and C11, and a cluster C-specific antibody, 17b, with mutations abolishing Fc-Fc receptor interactions as inhibitors in a competition rapid and fluorometric ADCC assay using gp120-coated CEM-nkr target cells with plasma from 51 non-transmitting and 21 transmitting breastfeeding mother-infant pairs. FINDINGS Cluster A-specific ADCC was common. Individually, neither A32-like nor C11-like ADCC was statistically significantly associated with risk of MTCT or infected infant survival. In combination, total maternal cluster A-specific ADCC was statistically significantly associated with decreased infected infant survival in a log-rank test (p = 0·017). There was a non-significant association for infant passively-acquired total cluster A-specific ADCC and decreased infected infant survival (p = 0·14). Surprisingly, plasma ADCC was enhanced in the presence of the defective Fc 17b competitor. Defective Fc 17b competitor-mediated maternal ADCC enhancement was statistically significantly associated with reduced infected infant survival (p = 0·011). A non-significant association was observed for passively-acquired infant ADCC enhancement and decreased survival (p = 0·19). INTERPRETATIONS These data suggest that ADCC targeting CD4i epitopes is not associated with protection against breast milk HIV transmission but is associated with decreased survival of infected infants. FUND: This study was funded by NIH grant R01AI076105 and NIH fellowship F30AI136636.
Collapse
Affiliation(s)
- Nicole E Naiman
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, United States of America; Molecular and Cellular Biology Program, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, United States of America; Medical Scientist Training Program, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, United States of America
| | - Jennifer Slyker
- Department of Global Health, University of Washington, 325 9(th) Avenue, Seattle, WA 98104, United States of America; Department of Epidemiology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, United States of America
| | - Barbra A Richardson
- Department of Global Health, University of Washington, 325 9(th) Avenue, Seattle, WA 98104, United States of America; Department of Biostatistics, University of Washington, 1705 NE Pacific Street, Seattle, WA 98195, United States of America; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, United States of America; Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, United States of America
| | - Grace John-Stewart
- Department of Global Health, University of Washington, 325 9(th) Avenue, Seattle, WA 98104, United States of America; Department of Epidemiology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, United States of America; Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, United States of America; Department of Pediatrics, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, United States of America
| | - Ruth Nduati
- Department of Paediatrics and Child Health, University of Nairobi, Kenyatta National Hospital, Nairobi, Kenya
| | - Julie M Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, United States of America; Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, United States of America.
| |
Collapse
|