1
|
Bergner T, Cortez Rayas L, Freimann G, Read C, von Einem J. Secondary Envelopment of Human Cytomegalovirus Is a Fast Process Utilizing the Endocytic Compartment as a Major Membrane Source. Biomolecules 2024; 14:1149. [PMID: 39334915 PMCID: PMC11430300 DOI: 10.3390/biom14091149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Secondary envelopment of the human cytomegalovirus (HCMV) is a critical but not well-understood process that takes place at the cytoplasmic viral assembly complex (cVAC) where nucleocapsids acquire their envelope by budding into cellular membranes containing viral glycoproteins. Previous studies presented controversial results regarding the composition of the viral envelope, suggesting trans-Golgi and endosomal origins, as well as intersections with the exosomal and endocytic pathways. Here, we investigated the role of endocytic membranes for the secondary envelopment of HCMV by using wheat germ agglutinin (WGA) pulse labeling to label glycoproteins at the plasma membrane and to follow their trafficking during HCMV infection by light microscopy and transmission electron microscopy (TEM). WGA labeled different membrane compartments within the cVAC, including early endosomes, multivesicular bodies, trans-Golgi, and recycling endosomes. Furthermore, TEM analysis showed that almost 90% of capsids undergoing secondary envelopment and 50% of enveloped capsids were WGA-positive within 90 min. Our data reveal extensive remodeling of the endocytic compartment in the late stage of HCMV infection, where the endocytic compartment provides an optimized environment for virion morphogenesis and serves as the primary membrane source for secondary envelopment. Furthermore, we show that secondary envelopment is a rapid process in which endocytosed membranes are transported from the plasma membrane to the cVAC within minutes to be utilized by capsids for envelopment.
Collapse
Affiliation(s)
- Tim Bergner
- Central Facility for Electron Microscopy, Ulm University, 89081 Ulm, Germany; (T.B.); (G.F.)
| | - Laura Cortez Rayas
- Institute of Virology, Ulm University Medical Center, 89081 Ulm, Germany;
| | - Gesa Freimann
- Central Facility for Electron Microscopy, Ulm University, 89081 Ulm, Germany; (T.B.); (G.F.)
| | - Clarissa Read
- Central Facility for Electron Microscopy, Ulm University, 89081 Ulm, Germany; (T.B.); (G.F.)
| | - Jens von Einem
- Institute of Virology, Ulm University Medical Center, 89081 Ulm, Germany;
| |
Collapse
|
2
|
Adelman JW, Sukowaty AT, Partridge KJ, Gawrys JE, Terhune SS, Ebert AD. Stabilizing microtubules aids neurite structure and disrupts syncytia formation in human cytomegalovirus-infected human forebrain neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.16.608340. [PMID: 39229072 PMCID: PMC11370344 DOI: 10.1101/2024.08.16.608340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Human cytomegalovirus (HCMV) is a prolific human herpesvirus that infects most individuals by adulthood. While typically asymptomatic in adults, congenital infection can induce serious neurological symptoms including hearing loss, visual deficits, cognitive impairment, and microcephaly in 10-15% of cases. HCMV has been shown to infect most neural cells with our group recently demonstrating this capacity in stem cell-derived forebrain neurons. Infection of neurons induces deleterious effects on calcium dynamics and electrophysiological function paired with gross restructuring of neuronal morphology. Here, we utilize an iPSC-derived model of the human forebrain to demonstrate how HCMV infection induces syncytia, drives neurite retraction, and remodels microtubule networks to promote viral production and release. We establish that HCMV downregulates microtubule associated proteins at 14 days postinfection while simultaneously sparing other cytoskeletal elements, and this includes HCMV-driven alterations to microtubule stability. Further, we pharmacologically modulate microtubule dynamics using paclitaxel (stabilize) and colchicine (destabilize) to examine the effects on neurite structure, syncytial morphology, assembly compartment formation, and viral release. With paclitaxel, we found improvement of neurite outgrowth with a corresponding disruption to HCMV-induced syncytia formation and Golgi network disruptions but with limited impact on viral titers. Together, these data suggest that HCMV infection-induced disruption of microtubules in human cortical neurons can be partially mitigated with microtubule stabilization, suggesting a potential avenue for future neuroprotective therapeutic exploration.
Collapse
Affiliation(s)
- Jacob W Adelman
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Andrew T Sukowaty
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kaitlyn J Partridge
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jessica E. Gawrys
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Scott S. Terhune
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
- Marquette University and Medical College of Wisconsin Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Allison D. Ebert
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
3
|
Figueroa‐González G, Quintas‐Granados LI, Reyes‐Hernández OD, Caballero‐Florán IH, Peña‐Corona SI, Cortés H, Leyva‐Gómez G, Habtemariam S, Sharifi‐Rad J. Review of the anticancer properties of 6-shogaol: Mechanisms of action in cancer cells and future research opportunities. Food Sci Nutr 2024; 12:4513-4533. [PMID: 39055196 PMCID: PMC11266911 DOI: 10.1002/fsn3.4129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/05/2024] [Accepted: 03/13/2024] [Indexed: 07/27/2024] Open
Abstract
Cancer is a major global health challenge that affects every nation and accounts for a large portion of the worldwide disease burden. Furthermore, cancer cases will rise significantly in the next few decades. The Food and Drug Administration has approved more than 600 drugs for treating diverse types of cancer. However, many conventional anticancer medications cause side effects, and drug resistance develops as the treatment proceeds with a concomitant impact on patients' quality of life. Thus, exploring natural products with antitumor properties and nontoxic action mechanisms is essential. Ginger (Zingiber officinale Roscoe) rhizome has a long history of use in traditional medicine, and it contains biologically active compounds, gingerols and shogaols. The main ginger shogaol is 6-shogaol, whose concentration dramatically increases during the processing of ginger, primarily due to the heat-induced conversion of 6-gingerol. Some studies have demonstrated that 6-shogaol possesses biological and pharmacological properties, such as antioxidant, anti-inflammatory, and anticancer activities. The mechanism of action of 6-shogaol as an anticancer drug includes induction of paraptosis, induction of apoptosis, increase in the production of reactive oxygen species, induction of autophagy, and the inhibition of AKT/mTOR signaling. Despite this knowledge, the mechanism of action of 6-shogaol is not fully understood, and the scientific data on its therapeutic dose, safety, and toxicity are not entirely described. This review article examines the potential of 6-shogaol as an anticancer drug, addressing the limitations of current medications; it covers 6-shogaol's attributes, mechanism of action in cancer cells, and opportunities for future research.
Collapse
Affiliation(s)
- Gabriela Figueroa‐González
- Laboratorio de Farmacogenética, UMIEZ, Facultad de Estudios Superiores ZaragozaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Laura Itzel Quintas‐Granados
- Colegio de Ciencias y Humanidades, Plantel CuautepecUniversidad Autónoma de la Ciudad de MéxicoCiudad de MéxicoMexico
| | - Octavio Daniel Reyes‐Hernández
- Laboratorio de Biología Molecular del Cáncer, UMIEZ, Facultad de Estudios Superiores ZaragozaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Isaac H. Caballero‐Florán
- Departamento de Farmacia, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Sheila I. Peña‐Corona
- Departamento de Farmacia, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de GenómicaInstituto Nacional de Rehabilitación Luis Guillermo Ibarra IbarraCiudad de MexicoMexico
| | - Gerardo Leyva‐Gómez
- Departamento de Farmacia, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UKCentral Avenue, Chatham‐MaritimeKentME4 4TBUK
| | | |
Collapse
|
4
|
Xu J, Zhong L, Shao H, Wang Q, Dai M, Shen P, Xiong Y, Zhang W, Deng X, Wang M, Zhu Y, Reng X, Jiang Y, Chen M, Zhu C, Fang X, He G, Han Y, Huang X, He X, Xu Y, Cai H, Huang L. Incidence and clinical features of HHV-7 detection in lower respiratory tract in patients with severe pneumonia: a multicenter, retrospective study. Crit Care 2023; 27:248. [PMID: 37353839 PMCID: PMC10290302 DOI: 10.1186/s13054-023-04530-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 06/13/2023] [Indexed: 06/25/2023] Open
Abstract
PURPOSE The significance of detecting human herpesvirus 7 (HHV-7) in the lower respiratory tract of patients with severe pneumonia is unclear. This study aims to evaluate the clinical characteristics and prognosis of detecting HHV-7 in the lower respiratory tract of patients with severe pneumonia. METHODS Patients with severe pneumonia requiring invasive mechanical ventilation and underwent commercial metagenomic next-generation sequencing (mNGS) testing of bronchoalveolar lavage fluid from January 2019 to March 2023 were enrolled in 12 medical centers. Clinical data of patients were collected retrospectively, and propensity score matching was used for subgroup analysis and mortality assessment. RESULTS In a total number of 721 patients, 45 cases (6.24%) were identified with HHV-7 positive in lower respiratory tract. HHV-7 positive patients were younger (59.2 vs 64.4, p = 0.032) and had a higher rate of co-detection with Cytomegalovirus (42.2% vs 20.7%, p = 0.001) and Epstein-Barr virus (35.6% vs 18.2%, p = 0.008). After propensity score matching for gender, age, SOFA score at ICU admission, and days from ICU admission to mNGS assay, there was no statistically significant difference in the 28-day mortality rate between HHV-7 positive and negative patients (46.2% vs 36.0%, p = 0.395). Multivariate Cox regression analysis adjusting for gender, age, and SOFA score showed that HHV-7 positive was not an independent risk factor for 28-day mortality (HR 1.783, 95%CI 0.936-3.400, p = 0.079). CONCLUSION HHV-7 was detected in the lungs of 6.24% of patients with severe pneumonia. The presence of HHV-7 in patients with severe pneumonia requiring invasive mechanical ventilation is associated with a younger age and co-detected of Cytomegalovirus and Epstein-Barr virus. While HHV-7 positivity was not found to be an independent risk factor for mortality in this cohort, this result may have been influenced by the relatively small sample size of the study.
Collapse
Affiliation(s)
- Jun Xu
- Department of Critical Care Medicine, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Lin Zhong
- Department of Critical Care Medicine, The First People's Hospital of Pinghu, Pinghu, China
| | - Huanzhang Shao
- Department of Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, China
| | - Qianqian Wang
- Department of Critical Care Medicine, The First Hospital of Jiaxing, Jiaxing, China
| | - Muhua Dai
- Department of Critical Care Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Peng Shen
- Department of Critical Care Medicine, The First Hospital of Jiaxing, Jiaxing, China
| | - Yonghui Xiong
- Department of Critical Care Medicine, Lanxi Hospital of Traditional Chinese Medicine, Lanxi, China
| | - Weijun Zhang
- Department of Critical Care Medicine, Lanxi Hospital of Traditional Chinese Medicine, Lanxi, China
| | - Xutao Deng
- Department of Critical Care Medicine, Lishui People's Hospital, Lishui, China
| | - Mingqiang Wang
- Department of Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, China
| | - Yue Zhu
- Department of Critical Care Medicine, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Xindie Reng
- Department of Critical Care Medicine, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Yongpo Jiang
- Department of Critical Care Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Mengyuan Chen
- Department of Critical Care Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Chengcong Zhu
- Department of Critical Care Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Xueling Fang
- Department of Critical Care Medicine, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Guojun He
- Department of Respiratory Care, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yijiao Han
- Department of Respiratory Care, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaohan Huang
- Kidney Disease Center, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Xuwei He
- Department of Critical Care Medicine, Lishui People's Hospital, Lishui, China.
| | - Yinghe Xu
- Department of Critical Care Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China.
| | - Hongliu Cai
- Department of Critical Care Medicine, The First Affiliated Hospital of Zhejiang University, Hangzhou, China.
| | - Lingtong Huang
- Department of Critical Care Medicine, The First Affiliated Hospital of Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Hansen SG, Womack JL, Perez W, Schmidt KA, Marshall E, Iyer RF, Cleveland Rubeor H, Otero CE, Taher H, Vande Burgt NH, Barfield R, Randall KT, Morrow D, Hughes CM, Selseth AN, Gilbride RM, Ford JC, Caposio P, Tarantal AF, Chan C, Malouli D, Barry PA, Permar SR, Picker LJ, Früh K. Late gene expression-deficient cytomegalovirus vectors elicit conventional T cells that do not protect against SIV. JCI Insight 2023; 8:e164692. [PMID: 36749635 PMCID: PMC10070102 DOI: 10.1172/jci.insight.164692] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Rhesus cytomegalovirus-based (RhCMV-based) vaccine vectors induce immune responses that protect ~60% of rhesus macaques (RMs) from SIVmac239 challenge. This efficacy depends on induction of effector memory-based (EM-biased) CD8+ T cells recognizing SIV peptides presented by major histocompatibility complex-E (MHC-E) instead of MHC-Ia. The phenotype, durability, and efficacy of RhCMV/SIV-elicited cellular immune responses were maintained when vector spread was severely reduced by deleting the antihost intrinsic immunity factor phosphoprotein 71 (pp71). Here, we examined the impact of an even more stringent attenuation strategy on vector-induced immune protection against SIV. Fusion of the FK506-binding protein (FKBP) degradation domain to Rh108, the orthologue of the essential human CMV (HCMV) late gene transcription factor UL79, generated RhCMV/SIV vectors that conditionally replicate only when the FK506 analog Shield-1 is present. Despite lacking in vivo dissemination and reduced innate and B cell responses to vaccination, Rh108-deficient 68-1 RhCMV/SIV vectors elicited high-frequency, durable, EM-biased, SIV-specific T cell responses in RhCMV-seropositive RMs at doses of ≥ 1 × 106 PFU. Strikingly, elicited CD8+ T cells exclusively targeted MHC-Ia-restricted epitopes and failed to protect against SIVmac239 challenge. Thus, Rh108-dependent late gene expression is required for both induction of MHC-E-restricted T cells and protection against SIV.
Collapse
Affiliation(s)
- Scott G. Hansen
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Jennie L. Womack
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Wilma Perez
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | | | - Emily Marshall
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Ravi F. Iyer
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Hillary Cleveland Rubeor
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Claire E. Otero
- Duke Human Vaccine Institute, Duke University Medical School, Durham, North Carolina, USA
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Husam Taher
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Nathan H. Vande Burgt
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Richard Barfield
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina, USA
- Center for Human Systems Immunology, School of Medicine, Duke University, Durham, North Carolina, USA
| | - Kurt T. Randall
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - David Morrow
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Colette M. Hughes
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Andrea N. Selseth
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Roxanne M. Gilbride
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Julia C. Ford
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Patrizia Caposio
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Alice F. Tarantal
- California National Primate Research Center, UCD, Davis, California, USA
- Departments of Pediatrics and Cell Biology and Human Anatomy, School of Medicine, UCD, Davis, California, USA
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina, USA
- Center for Human Systems Immunology, School of Medicine, Duke University, Durham, North Carolina, USA
| | - Daniel Malouli
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Peter A. Barry
- California National Primate Research Center, UCD, Davis, California, USA
| | - Sallie R. Permar
- Duke Human Vaccine Institute, Duke University Medical School, Durham, North Carolina, USA
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Louis J. Picker
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Klaus Früh
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| |
Collapse
|
6
|
Membraneless Compartmentalization of Nuclear Assembly Sites during Murine Cytomegalovirus Infection. Viruses 2023; 15:v15030766. [PMID: 36992475 PMCID: PMC10053344 DOI: 10.3390/v15030766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/28/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Extensive reorganization of infected cells and the formation of large structures known as the nuclear replication compartment (RC) and cytoplasmic assembly compartment (AC) is a hallmark of beta-herpesvirus infection. These restructurings rely on extensive compartmentalization of the processes that make up the virus manufacturing chain. Compartmentalization of the nuclear processes during murine cytomegalovirus (MCMV) infection is not well described. In this study, we visualized five viral proteins (pIE1, pE1, pM25, pm48.2, and pM57) and replicated viral DNA to reveal the nuclear events during MCMV infection. As expected, these events can be matched with those described for other beta and alpha herpesviruses and contribute to the overall picture of herpesvirus assembly. Imaging showed that four viral proteins (pE1, pM25, pm48.2, and pM57) and replicated viral DNA condense in the nucleus into membraneless assemblies (MLAs) that undergo a maturation sequence to form the RC. One of these proteins (pM25), which is also expressed in a cytoplasmic form (pM25l), showed similar MLAs in the AC. Bioinformatics tools for predicting biomolecular condensates showed that four of the five proteins had a high propensity for liquid–liquid phase separation (LLPS), suggesting that LLPS may be a mechanism for compartmentalization within RC and AC. Examination of the physical properties of MLAs formed during the early phase of infection by 1,6-hexanediol treatment in vivo revealed liquid-like properties of pE1 MLAs and more solid-like properties of pM25 MLAs, indicating heterogeneity of mechanisms in the formation of virus-induced MLAs. Analysis of the five viral proteins and replicated viral DNA shows that the maturation sequence of RC and AC is not completed in many cells, suggesting that virus production and release is carried out by a rather limited number of cells. This study thus lays the groundwork for further investigation of the replication cycle of beta-herpesviruses, and the results should be incorporated into plans for high-throughput and single-cell analytic approaches.
Collapse
|
7
|
‘Come Together’—The Regulatory Interaction of Herpesviral Nuclear Egress Proteins Comprises both Essential and Accessory Functions. Cells 2022; 11:cells11111837. [PMID: 35681532 PMCID: PMC9180862 DOI: 10.3390/cells11111837] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 02/01/2023] Open
Abstract
Herpesviral nuclear egress is a fine-tuned regulatory process that defines the nucleocytoplasmic release of viral capsids. Nuclear capsids are unable to traverse via nuclear pores due to the fact of their large size; therefore, herpesviruses evolved to develop a vesicular transport pathway mediating the transition across the two leaflets of the nuclear membrane. The entire process involves a number of regulatory proteins, which support the local distortion of the nuclear envelope. In the case of the prototype species of β-Herpesvirinae, the human cytomegalovirus (HCMV), the nuclear egress complex (NEC) is determined by the core proteins pUL50 and pUL53 that oligomerize, form capsid docking lattices and mediate multicomponent assembly with NEC-associated viral and cellular proteins. The NEC-binding principle is based on the hook-into-groove interaction through an N-terminal hook-like pUL53 protrusion that embraces an α-helical pUL50 binding groove. Thus far, the function and characteristics of herpesviral core NECs have been well studied and point to the groove proteins, such as pUL50, as the multi-interacting, major determinants of NEC formation and egress. This review provides closer insight into (i) sequence and structure conservation of herpesviral core NEC proteins, (ii) experimentation on cross-viral core NEC interactions, (iii) the essential functional roles of hook and groove proteins for viral replication, (iv) an establishment of assay systems for NEC-directed antiviral research and (v) the validation of NEC as putative antiviral drug targets. Finally, this article provides new insights into the conservation, function and antiviral targeting of herpesviral core NEC proteins and, into the complex regulatory role of hook and groove proteins during the assembly, egress and maturation of infectious virus.
Collapse
|
8
|
Liu B, Ma Y, Huang Y, Liu Z, Ruan Q, Qi Y. Inhibition of Human Cytomegalovirus Particle Maturation by Activation of Liver X Receptor. Front Microbiol 2022; 13:846386. [PMID: 35330771 PMCID: PMC8940258 DOI: 10.3389/fmicb.2022.846386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/24/2022] [Indexed: 12/03/2022] Open
Abstract
Human cytomegalovirus (HCMV), a herpesvirus family member, is a large, complex enveloped virus. The activation of liver X receptor (LXR) can significantly inhibit the replication of HCMV and weaken the virulence of progeny virus (unpublished data). Our results showed activated LXR affected some important viral protein expression and reduced cholesterol content in HCMV infected cells and virus particles. To further clarify the influence of activated LXR on HCMV replication, HCMV assembly and maturation processes were studied by transmission electron microscopy (TEM) in HCMV infected foreskin fibroblasts treated with LXR agonist GW3965. Results showed that activated LXR could reduce the envelope integrity of maturating virions. The functional stage of activated LXR on viral envelope integrity was mainly at virus assembly compartment (VAC) mediated envelopment but not structurally complete virus nucleocapsid formation and the egress of nucleocapsid from the nucleus to the cytoplasm mediated by nuclear egress complex. Reduced cholesterol synthesis and viral protein expression might interfere with the VAC-mediated envelopment. The nucleocapsid and tegument proteins enter the VAC area for the secondary envelope, which was interfered with and resulted in the defective particle, thereby affecting the amount and infectivity of the mature virus. The results indicate that inhibition of HCMV maturation is one mechanism of activated LXR inhibiting virus replication in infected cells.
Collapse
Affiliation(s)
- Bingnan Liu
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, China.,Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.,Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanping Ma
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, China.,Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.,Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yujing Huang
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, China.,Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.,Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhongyang Liu
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, China.,Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.,Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiang Ruan
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, China.,Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.,Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Qi
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, China.,Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.,Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|