1
|
Zott MD, Zuschlag DW, Trauner DH. Concise Synthesis of (-)-Veratramine and (-)-20- iso-Veratramine via Aromative Diels-Alder Reaction. J Am Chem Soc 2025; 147:3010-3016. [PMID: 39811914 DOI: 10.1021/jacs.4c16495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
A concise and convergent synthesis of the isosteroidal alkaloids veratramine and 20-iso-veratramine has been accomplished. A Horner-Wadsworth-Emmons olefination joins two chiral building blocks of approximately equal complexity and a transition-metal catalyzed intramolecular Diels-Alder cycloaddition-aromatization cascade constructs the tetrasubstituted arene. Other key steps include a highly diastereoselective crotylation of an N-sulfonyl iminium ion and an Eschenmoser fragmentation. The chiral building blocks developed for this synthesis could be used to access a range of additional isosteroidal alkaloids using our diversifiable strategy. Our work shows that 20-iso-veratramine is not identical with a natural product proposed to have that structure. The single crystal X-ray structures of veratramine and 20-iso-veratramine are reported.
Collapse
Affiliation(s)
- Michael D Zott
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daniel W Zuschlag
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Dirk H Trauner
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
2
|
Liu Y, Liu X, Li Y, Pei Y, Jaleel A, Ren M. Potato steroidal glycoalkaloids: properties, biosynthesis, regulation and genetic manipulation. MOLECULAR HORTICULTURE 2024; 4:43. [PMID: 39668379 PMCID: PMC11639122 DOI: 10.1186/s43897-024-00118-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/11/2024] [Indexed: 12/14/2024]
Abstract
Steroidal glycoalkaloids (SGAs), predominantly comprising α-solanine (C45H73NO15) and α-chaconine (C45H73NO14), function as natural phytotoxins within potatoes. In addition to their other roles, these SGAs are crucial for enabling potato plants to withstand biotic stresses. However, they also exhibit toxicity towards humans and animals. Consequently, the content and distribution of SGAs are crucial traits for the genetic improvement of potatoes. This review focuses on advancing research related to the biochemical properties, biosynthesis, regulatory mechanisms, and genetic improvement of potato SGAs. Furthermore, we provide perspectives on future research directions to further enhance our understanding of SGA biosynthesis and regulation, ultimately facilitating the targeted development of superior potato varieties.
Collapse
Affiliation(s)
- Yongming Liu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, 610213, China.
- Yazhouwan National Laboratory, Sanya, 572025, China.
| | - Xiaowei Liu
- Chengdu Agricultural College, Chengdu, 611130, China
| | - Yingge Li
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, 610213, China
| | - Yanfei Pei
- Hainan Seed Industry Laboratory, Sanya, 572025, China
| | - Abdul Jaleel
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, 610213, China.
| |
Collapse
|
3
|
Lu DX, Zhuang LX, Jiang P, Li YY, Zhang YQ, Luo YM, Pan J, Hao ZC, Guan W, Chen QS, Zhang LL, Kuang HX, Liu Y, Yang BY. Three undescribed isosteroidal alkaloids from the bulbs of Fritillaria ussuriensis maxim: Anti-inflammatory activities, docking studies and molecular dynamic. Fitoterapia 2024; 179:106246. [PMID: 39395696 DOI: 10.1016/j.fitote.2024.106246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/25/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Three undescribed isosteroidal alkaloids (1-3), along with two known ones (4, 5) were isolated from the bulbs of Fritillaria ussuriensis Maxim, their structures were established by comprehensive analyses of the 1D, 2D-NMR and HR-ESI-MS data. Meanwhile, LPS-activated RAW 264.7 macrophages were used to determine the potential anti-inflammatory activity of all the alkaloids in vitro. Among them, compounds 1 and 4 showed significant inhibitory effects against LPS-induced NO production with IC50 values of 7.79 μM and 11.22 μM, respectively. Compounds 1 and 4 were performed between molecular docking with TLR4/MD2. Based on the results of cell experiments and binding affinities, compound 1 (UG) was chosen for molecular dynamic analysis together with the TLR4/MD2 protein.
Collapse
Affiliation(s)
- Dong-Xv Lu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, PR China
| | - Lei-Xin Zhuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, PR China
| | - Peng Jiang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, PR China
| | - Yan-Ying Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, PR China
| | - Yi-Qiang Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, PR China
| | - Yu-Meng Luo
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, PR China
| | - Juan Pan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, PR China
| | - Zhi-Chao Hao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, PR China
| | - Wei Guan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, PR China
| | - Qing-Shan Chen
- College of Agriculture, Northeast Agricultural University, Harbin 150030, PR China
| | - Li-Li Zhang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, PR China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, PR China
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, PR China.
| | - Bing-You Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, PR China.
| |
Collapse
|
4
|
Qiao X, Zhai S, Xu J, He H, He X, Hu L, Gao S. Asymmetric Photoinduced Excited-State Nazarov Reaction. J Am Chem Soc 2024; 146:29150-29158. [PMID: 39383449 DOI: 10.1021/jacs.4c11481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
We report herein the first asymmetric photoinduced excited-state Nazarov reaction of non-aromatic dicyclic divinyl ketones by using hydrogen-bonding catalysis. The enantioselectivity of photoinduced electrocyclization is highly dependent on the structural features of the substrate and its interaction with chiral catalysts. For the simple dicyclic divinyl ketone substrates, there is no discernible selectivity of the hydrogen bond coordination between the thiourea and carbonyl groups of the substrates in the ground state. However, we found that the direction of the electrocyclization was well controlled in each coordination model and the N,N'-dimethylamine motif acts as a base in the regioselective deprotonation process, which leads to the formation of two stereoisomers with high enantioselectivity. Photolysis of dicyclic divinyl ketones bearing a 1,3-dioxolane motif in the presence of bifunctional hybrid peptide-thiourea chiral catalysts gave the tricyclic cis-hydrofluorenones with good enantioselectivity. Mechanistic and DFT studies suggested that the amide and thiourea groups in the bifunctional chiral catalysts play a key role as H-bond donors, which coordinate with both the carbonyl group and the 1,3-dioxolane motif to provide a more favorable chiral species, and control the direction of the electrocyclization. Due to the presence of the rigid 1,3-dioxolane ring, the deprotonation/protonation process occurs regiospecifically with high driving force. This photo-electrocyclization is mild (room temperature and neutral solution), which results a broad reaction scope and functional group tolerance and demonstrates its synthetic potential in organic synthesis.
Collapse
Affiliation(s)
- Xuelong Qiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Shaojun Zhai
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, Wuhu Hospital Affiliated to East China Normal University, East China Normal University, Shanghai 200062, China
| | - Jiwei Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Haibing He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xiao He
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, Wuhu Hospital Affiliated to East China Normal University, East China Normal University, Shanghai 200062, China
| | - Lianrui Hu
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, Wuhu Hospital Affiliated to East China Normal University, East China Normal University, Shanghai 200062, China
| | - Shuanhu Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, Wuhu Hospital Affiliated to East China Normal University, East China Normal University, Shanghai 200062, China
| |
Collapse
|
5
|
Guo Y, Fang R, Jiao Y, Liu J, Lu JT, Luo T. Divergent syntheses of complex Veratrum alkaloids. Nat Commun 2024; 15:7639. [PMID: 39223144 PMCID: PMC11369162 DOI: 10.1038/s41467-024-52134-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
The Veratrum alkaloids are a class of highly intricate natural products renowned for their complex structural and stereochemical characteristics, which underlie a diverse array of pharmacological activities ranging from anti-hypertensive properties to antimicrobial effects. These properties have generated substantial interest among both synthetic chemists and biologists. While numerous advancements have been made in the synthesis of jervanine and veratramine subtypes over the past 50 years, the total synthesis of highly oxidized cevanine subtypes has remained relatively scarce. Building on the efficiency of our previously developed strategy for constructing the hexacyclic carbon skeleton of the Veratrum alkaloid family via a stereoselective intramolecular Diels-Alder reaction and radical cyclization, here we show the development of a unified synthetic approach to access highly oxidized Veratrum alkaloids. This includes the total synthesis of (-)-zygadenine, (-)-germine, (-)-protoverine and the alkamine of veramadine A, by capitalizing on a meticulously designed sequence of redox manipulations and a late-stage neighboring-group participation strategy.
Collapse
Affiliation(s)
- Yinliang Guo
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Runting Fang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yang Jiao
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jiaqi Liu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jia-Tian Lu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Tuoping Luo
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China.
| |
Collapse
|
6
|
Hou W, Lin H, Wu Y, Li C, Chen J, Liu XY, Qin Y. Divergent and gram-scale syntheses of (-)-veratramine and (-)-cyclopamine. Nat Commun 2024; 15:5332. [PMID: 38909052 PMCID: PMC11193734 DOI: 10.1038/s41467-024-49748-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024] Open
Abstract
Veratramine and cyclopamine, two of the most representative members of the isosteroidal alkaloids, are valuable molecules in agricultural and medicinal chemistry. While plant extraction of these compounds suffers from uncertain supply, efficient chemical synthesis approaches are in high demand. Here, we present concise, divergent, and scalable syntheses of veratramine and cyclopamine with 11% and 6.2% overall yield, respectively, from inexpensive dehydro-epi-androsterone. Our synthesis readily provides gram quantities of both target natural products by utilizing a biomimetic rearrangement to form the C-nor-D-homo steroid core and a stereoselective reductive coupling/(bis-)cyclization sequence to establish the (E)/F-ring moiety.
Collapse
Affiliation(s)
- Wenlong Hou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Hao Lin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yanru Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Chuang Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Jiajun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Xiao-Yu Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China.
| | - Yong Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
Dembitsky VM. Naturally Occurring Norsteroids and Their Design and Pharmaceutical Application. Biomedicines 2024; 12:1021. [PMID: 38790983 PMCID: PMC11117879 DOI: 10.3390/biomedicines12051021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
The main focus of this review is to introduce readers to the fascinating class of lipid molecules known as norsteroids, exploring their distribution across various biotopes and their biological activities. The review provides an in-depth analysis of various modified steroids, including A, B, C, and D-norsteroids, each characterized by distinct structural alterations. These modifications, which range from the removal of specific methyl groups to changes in the steroid core, result in unique molecular architectures that significantly impact their biological activity and therapeutic potential. The discussion on A, B, C, and D-norsteroids sheds light on their unique configurations and how these structural modifications influence their pharmacological properties. The review also presents examples from natural sources that produce a diverse array of steroids with distinct structures, including the aforementioned A, B, C, and D-nor variants. These compounds are sourced from marine organisms like sponges, soft corals, and starfish, as well as terrestrial entities such as plants, fungi, and bacteria. The exploration of these steroids encompasses their biosynthesis, ecological significance, and potential medical applications, highlighting a crucial area of interest in pharmacology and natural product chemistry. The review emphasizes the importance of researching these steroids for drug development, particularly in addressing diseases where conventional medications are inadequate or for conditions lacking sufficient therapeutic options. Examples of norsteroid synthesis are provided to illustrate the practical applications of this research.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| |
Collapse
|
8
|
Jin Y, Hok S, Bacsa J, Dai M. Convergent and Efficient Total Synthesis of (+)-Heilonine Enabled by C-H Functionalizations. J Am Chem Soc 2024; 146:1825-1831. [PMID: 38226869 PMCID: PMC10811669 DOI: 10.1021/jacs.3c13492] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
We report a convergent and efficient total synthesis of the C-nor D-homo steroidal alkaloid (+)-heilonine with a hexacyclic ring system, nine stereocenters, and a trans-hydrindane moiety. Our synthesis features four selective C-H functionalizations to form key C-C bonds and stereocenters, a Stille carbonylative cross-coupling to connect the AB ring system with the DEF ring system, and a Nazarov cyclization to construct the five-membered C ring. These enabling transformations significantly reduced functional group manipulations and delivered (+)-heilonine in 11 or 13 longest linear sequence (LLS) steps.
Collapse
Affiliation(s)
- Yuan Jin
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Sovanneary Hok
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - John Bacsa
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Mingji Dai
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Department
of Pharmacology and Chemical Biology, Emory
University, Atlanta, Georgia 30322, United States
| |
Collapse
|
9
|
Shao H, Liu W, Liu M, He H, Zhou QL, Zhu SF, Gao S. Asymmetric Synthesis of Cyclopamine, a Hedgehog (Hh) Signaling Pathway Inhibitor. J Am Chem Soc 2023; 145:25086-25092. [PMID: 37948601 DOI: 10.1021/jacs.3c10362] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Cyclopamine is a teratogenic steroidal alkaloid, which inhibits the Hedgehog (Hh) signaling pathway by targeting the Smoothened (Smo) receptor. Suppression of Hh signaling with synthetic small molecules has been pursued as a therapeutic approach for the treatment of cancer. We report herein the asymmetric synthesis of cyclopamine based on a two-stage relay strategy. Stage-I: total synthesis of veratramine through a convergent approach, wherein a crucial photoinduced excited-state Nazarov reaction was applied to construct the basic [6-6-5-6] skeleton of C-nor-D-homo-steroid. Stage-II: conversion of veratramine to cyclopamine was achieved through a sequence of chemo-selective redox manipulations.
Collapse
Affiliation(s)
- Hao Shao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Wenheng Liu
- State Key Laboratory of Petroleum Molecular and Process engineering, SKLPMPE, Sinopec research institute of petroleum processing Co., LTD., Beijing 100083, China, East China Normal University, Shanghai 200062, China
| | - Muhan Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Haibing He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- State Key Laboratory of Petroleum Molecular and Process engineering, SKLPMPE, Sinopec research institute of petroleum processing Co., LTD., Beijing 100083, China, East China Normal University, Shanghai 200062, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shou-Fei Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shuanhu Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- State Key Laboratory of Petroleum Molecular and Process engineering, SKLPMPE, Sinopec research institute of petroleum processing Co., LTD., Beijing 100083, China, East China Normal University, Shanghai 200062, China
| |
Collapse
|
10
|
Delbrouck JA, Desgagné M, Comeau C, Bouarab K, Malouin F, Boudreault PL. The Therapeutic Value of Solanum Steroidal (Glyco)Alkaloids: A 10-Year Comprehensive Review. Molecules 2023; 28:4957. [PMID: 37446619 DOI: 10.3390/molecules28134957] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Steroidal (glycol)alkaloids S(G)As are secondary metabolites made of a nitrogen-containing steroidal skeleton linked to a (poly)saccharide, naturally occurring in the members of the Solanaceae and Liliaceae plant families. The genus Solanum is familiar to all of us as a food source (tomato, potato, eggplant), but a few populations have also made it part of their ethnobotany for their medicinal properties. The recent development of the isolation, purification and analysis techniques have shed light on the structural diversity among the SGAs family, thus attracting scientists to investigate their various pharmacological properties. This review aims to overview the recent literature (2012-2022) on the pharmacological benefits displayed by the SGAs family. Over 17 different potential therapeutic applications (antibiotic, antiviral, anti-inflammatory, etc.) were reported over the past ten years, and this unique review analyzes each pharmacological effect independently without discrimination of either the SGA's chemical identity or their sources. A strong emphasis is placed on the discovery of their biological targets and the subsequent cellular mechanisms, discussing in vitro to in vivo biological data. The therapeutic value and the challenges of the solanum steroidal glycoalkaloid family is debated to provide new insights for future research towards clinical development.
Collapse
Affiliation(s)
- Julien A Delbrouck
- Institut de Pharmacologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Michael Desgagné
- Institut de Pharmacologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Christian Comeau
- Institut de Pharmacologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Kamal Bouarab
- Centre SEVE, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, 2500 Boul de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - François Malouin
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, 2500 Boul de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Pierre-Luc Boudreault
- Institut de Pharmacologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
11
|
3α,7-Dihydroxy-14(13→12) abeo-5β,12α(H),13β(H)-cholan-24-oic Acids Display Neuroprotective Properties in Common Forms of Parkinson's Disease. Biomolecules 2022; 13:biom13010076. [PMID: 36671460 PMCID: PMC9855844 DOI: 10.3390/biom13010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/17/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Parkinson's Disease is the most common neurodegenerative movement disorder globally, with prevalence increasing. There is an urgent need for new therapeutics which are disease-modifying rather than symptomatic. Mitochondrial dysfunction is a well-documented mechanism in both sporadic and familial Parkinson's Disease. Furthermore, ursodeoxycholic acid (UDCA) has been identified as a bile acid which leads to increased mitochondrial function in multiple in vitro and in vivo models of Parkinson's Disease. Here, we describe the synthesis of novel C-nor-D-homo bile acid derivatives and the 12-hydroxy-methylated derivative of lagocholic acid (7) and their biological evaluation in fibroblasts from patients with either sporadic or LRRK2 mutant Parkinson's Disease. These compounds boost mitochondrial function to a similar level or above that of UDCA in many assays; notable, however, is their ability to boost mitochondrial function to a higher level and at lower concentrations than UDCA specifically in the fibroblasts from LRRK2 patients. Our study indicates that novel bile acid chemistry could lead to the development of more efficacious bile acids which increase mitochondrial function and ultimately cellular health at lower concentrations proving attractive potential novel therapeutics for Parkinson's Disease.
Collapse
|
12
|
Insights into the Cardiotoxic Effects of Veratrum Lobelianum Alkaloids: Pilot Study. Toxins (Basel) 2022; 14:toxins14070490. [PMID: 35878228 PMCID: PMC9315652 DOI: 10.3390/toxins14070490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/26/2022] Open
Abstract
Jervine, protoveratrine A (proA), and protoveratrine B (proB) are Veratrum alkaloids that are presented in some remedies obtained from Veratrum lobelianum, such as Veratrum aqua. This paper reports on a single-center pilot cardiotoxic mechanism study of jervine, proA, and proB in case series. The molecular aspects were studied via molecular dynamic simulation, molecular docking with cardiac sodium channel NaV1.5, and machine learning-based structure–activity relationship modeling. HPLC-MS/MS method in combination with clinical events were used to analyze Veratrum alkaloid cardiotoxicity in patients. Jervine demonstrates the highest docking score (−10.8 kcal/mol), logP value (4.188), and pKa value (9.64) compared with proA and proB. Also, this compound is characterized by the lowest calculated IC50. In general, all three analyzed alkaloids show the affinity to NaV1.5 that highly likely results in cardiotoxic action. The clinical data of seven cases of intoxication by Veratrum aqua confirms the results of molecular modeling. Patients exhibited nausea, muscle weakness, bradycardia, and arterial hypotension. The association between alkaloid concentrations in blood and urine and severity of patient condition is described. These experiments, while primary, confirmed that jervine, proA, and proB contribute to cardiotoxicity by NaV1.5 inhibition.
Collapse
|
13
|
Abstract
Chemical transformations that rapidly and efficiently construct a high level of molecular complexity in a single step are perhaps the most valuable in total synthesis. Among such transformations is the transition metal catalyzed [2 + 2 + 2] cycloisomerization reaction, which forges three new C-C bonds and one or more rings in a single synthetic operation. We report here a strategy that leverages this transformation to open de novo access to the Veratrum family of alkaloids. The highly convergent approach described herein includes (i) the enantioselective synthesis of a diyne fragment containing the steroidal A/B rings, (ii) the asymmetric synthesis of a propargyl-substituted piperidinone (F ring) unit, (iii) the high-yielding union of the above fragments, and (iv) the intramolecular [2 + 2 + 2] cycloisomerization reaction of the resulting carbon framework to construct in a single step the remaining three rings (C/D/E) of the hexacyclic cevanine skeleton. Efficient late-stage maneuvers culminated in the first total synthesis of heilonine (1), achieved in 21 steps starting from ethyl vinyl ketone.
Collapse
Affiliation(s)
- Kyle J. Cassaidy
- Department of Chemistry, University
of Chicago, Chicago, Illinois 60637, United States
| | - Viresh H. Rawal
- Department of Chemistry, University
of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
14
|
Concise Large-Scale Synthesis of Tomatidine, A Potent Antibiotic Natural Product. Molecules 2021; 26:molecules26196008. [PMID: 34641551 PMCID: PMC8512692 DOI: 10.3390/molecules26196008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/17/2022] Open
Abstract
Tomatidine has recently generated a lot of interest amongst the pharmacology, medicine, and biology fields of study, especially for its newfound activity as an antibiotic agent capable of targeting multiple strains of bacteria. In the light of its low natural abundance and high cost, an efficient and scalable multi-gram synthesis of tomatidine has been developed. This synthesis uses a Suzuki-Miyaura-type coupling reaction as a key step to graft an enantiopure F-ring side chain to the steroidal scaffold of the natural product, which was accessible from low-cost and commercially available diosgenin. A Lewis acid-mediated spiroketal opening followed by an azide substitution and reduction sequence is employed to generate the spiroaminoketal motif of the natural product. Overall, this synthesis produced 5.2 g in a single pass in 15 total steps and 15.2% yield using a methodology that is atom economical, scalable, and requires no flash chromatography purifications.
Collapse
|
15
|
Nallagonda R, Karimov RR. Copper-Catalyzed Regio- and Diastereoselective Additions of Boron-Stabilized Carbanions to Heteroarenium Salts: Synthesis of Azaheterocycles Containing Contiguous Stereocenters. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rajender Nallagonda
- Department of Chemistry and Biochemistry, Auburn University, 378 Chemistry Building, Auburn, Alabama 36849 United States
| | - Rashad R. Karimov
- Department of Chemistry and Biochemistry, Auburn University, 378 Chemistry Building, Auburn, Alabama 36849 United States
| |
Collapse
|
16
|
Kim JY, Son E, Kim DS. One New Veratramine-Type Alkaloid From Veratrum maackii var. japonicum and Antioxidative Activities of Isolated Compounds. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20939408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A new veratramine-type alkaloid (1), along with 4 known compounds (2-5), was isolated from the roots of Veratrum maackii var. japonicum (Baker) T. Shimizu. Their structures were elucidated on the basis of NMR and mass spectroscopic data. All compounds were evaluated for their antioxidant activities using 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS +) and 2,2-diphenyl-1-picrylhydrazyl (DPPH·) radical scavenging assays. Compounds 1 and 3-5 showed ABTS+ radical scavenging activity with IC50 values ranging from 15.0 to 85.7 μM.
Collapse
Affiliation(s)
- Ji-Yul Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - Eunjung Son
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - Dong-Seon Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Korea
| |
Collapse
|
17
|
Szeliga M, Ciura J, Tyrka M. Representational Difference Analysis of Transcripts Involved in Jervine Biosynthesis. Life (Basel) 2020; 10:life10060088. [PMID: 32575579 PMCID: PMC7344996 DOI: 10.3390/life10060088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/28/2022] Open
Abstract
Veratrum-type steroidal alkaloids (VSA) are the major bioactive ingredients that strongly determine the pharmacological activities of Veratrum nigrum. Biosynthesis of VSA at the molecular and genetic levels is not well understood. Next-generation sequencing of representational difference analysis (RDA) products after elicitation and precursor feeding was applied to identify candidate genes involved in VSA biosynthesis. A total of 12,048 contigs with a median length of 280 bases were received in three RDA libraries obtained after application of methyl jasmonate, squalene and cholesterol. The comparative analysis of annotated sequences was effective in identifying candidate genes. GABAT2 transaminase and hydroxylases active at C-22, C-26, C-11, and C-16 positions in late stages of jervine biosynthesis were selected. Moreover, genes coding pyrroline-5-carboxylate reductase and enzymes from the short-chain dehydrogenases/reductases family (SDR) associated with the reduction reactions of the VSA biosynthesis process were proposed. The data collected contribute to better understanding of jervine biosynthesis and may accelerate implementation of biotechnological methods of VSA biosynthesis.
Collapse
Affiliation(s)
- Magdalena Szeliga
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6 Ave, 35-959 Rzeszow, Poland; (J.C.); (M.T.)
- Correspondence:
| | - Joanna Ciura
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6 Ave, 35-959 Rzeszow, Poland; (J.C.); (M.T.)
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Mirosław Tyrka
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6 Ave, 35-959 Rzeszow, Poland; (J.C.); (M.T.)
| |
Collapse
|
18
|
Wang Y, Shi Y, Tian WS, Tang P, Zhuang C, Chen FE. Stereoselective Synthesis of (-)-Verazine and Congeners via a Cascade Ring-Switching Process of Furostan-26-acid. Org Lett 2020; 22:2761-2765. [PMID: 32202118 DOI: 10.1021/acs.orglett.0c00747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An efficient synthetic strategy for three natural seco-type cholestane alkaloids isolated from the Veratrum plants, based on commercially available naturally occurring and abundant (-)-diosgenin (1), as exemplified in the concise asymmetric synthesis of (-)-verazine (4), (-)-veramiline (5) (proposed structure), and its 22-epimer, (-)-oblonginine (6), is presented. This work highlights the application of a cascade ring-switching process of (-)-diosgenin to achieve the E-ring opening and construction of chiral six-membered lactone challenges in seco-type cholestane alkaloid synthesis. This approach enables the synthesis of related natural and nature-like novel cholestane alkaloids, opening up opportunities for more extensive exploration of cholestane alkaloid biology.
Collapse
Affiliation(s)
- Yun Wang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Yong Shi
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wei-Sheng Tian
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Pei Tang
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chunlin Zhuang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Fen-Er Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China.,West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
19
|
Li Q, Zhao YL, Long CB, Zhu PF, Liu YP, Luo XD. Seven new veratramine-type alkaloids with potent analgesic effect from Veratrum taliense. JOURNAL OF ETHNOPHARMACOLOGY 2019; 244:112137. [PMID: 31381955 DOI: 10.1016/j.jep.2019.112137] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/02/2019] [Accepted: 08/02/2019] [Indexed: 05/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Veratrum taliense is traditionally used TCMs in Yunnan province of China for pain and inflammation. Previous research and clinical applications have shown that V. taliense had significant analgesic activity. Jevine-type alkaloids were shown to be one of the anti-inflammatory and analgesic agents from V. taliense. However, other types of compounds from V. taliense related to its traditional use remains unknown. AIM OF THE STUDY To identify veratramine-type steroidal alkaloids with analgesic effects from the roots and rhizomes of V. taliense. MATERIALS AND METHODS Compounds were isolated from the roots and rhizomes of V. taliense by chromatographic separation. Their structures were elucidated based on UV, IR, NMR and MS spectra data. Analgesic activity was assessed with acetic acid-induced writhing in mice model. RESULTS Seven new veratramine-type alkaloids were isolated from the roots and rhizomes of V. taliense. They all exhibited significant analgesic activity, of which alkaloids 1 and 4 were more potent antalgic than the well-known analgesic drug, pethidine. CONCLUSIONS The veratramine-type alkaloids from V. taliense may serve as new leads for the discovery of analgesic drugs.
Collapse
Affiliation(s)
- Qiong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yun-Li Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Cheng-Bo Long
- Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, 650223, Yunnan, China
| | - Pei-Feng Zhu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Ya-Ping Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xiao-Dong Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
20
|
Czajkowska-Szczykowska D, Corona Díaz A, Aleksiejczuk G, López Castro Y, Morzycki JW. Access to 27-Nortomatidine and 27-Norsoladulcidine Derivatives. J Org Chem 2019; 84:4104-4111. [DOI: 10.1021/acs.joc.9b00103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Alejandro Corona Díaz
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ed.B-1, C.U., Morelia, Michoacán 58030, Mexico
| | - Grzegorz Aleksiejczuk
- Institute of Chemistry, University of Bialystok, K. Ciołkowskiego 1 K, 15-245 Białystok, Poland
| | - Yliana López Castro
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ed.B-1, C.U., Morelia, Michoacán 58030, Mexico
| | - Jacek W. Morzycki
- Institute of Chemistry, University of Bialystok, K. Ciołkowskiego 1 K, 15-245 Białystok, Poland
| |
Collapse
|
21
|
Ineichen S, Kuenzler A, Kreuzer M, Marquardt S, Reidy B. Digestibility, nitrogen utilization and milk fatty acid profile of dairy cows fed hay from species rich mountainous grasslands with elevated herbal and phenolic contents. Anim Feed Sci Technol 2019. [DOI: 10.1016/j.anifeedsci.2018.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Dahlin P, Müller MC, Ekengren S, McKee LS, Bulone V. The Impact of Steroidal Glycoalkaloids on the Physiology of Phytophthora infestans, the Causative Agent of Potato Late Blight. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:531-542. [PMID: 28510502 DOI: 10.1094/mpmi-09-16-0186-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Steroidal glycoalkaloids (SGAs) are plant secondary metabolites known to be toxic to animals and humans and that have putative roles in defense against pests. The proposed mechanisms of SGA toxicity are sterol-mediated disruption of membranes and inhibition of cholinesterase activity in neurons. It has been suggested that phytopathogenic microorganisms can overcome SGA toxicity by enzymatic deglycosylation of SGAs. Here, we have explored SGA-mediated toxicity toward the invasive oomycete Phytophthora infestans, the causative agent of the late blight disease in potato and tomato, as well as the potential for SGA deglycosylation by this species. Our growth studies indicate that solanidine, the nonglycosylated precursor of the potato SGAs α-chaconine and α-solanine, has a greater physiological impact than its glycosylated forms. All of these compounds were incorporated into the mycelium, but only solanidine could strongly inhibit the growth of P. infestans in liquid culture. Genes encoding several glycoside hydrolases with potential activity on SGAs were identified in the genome of P. infestans and were shown to be expressed. However, we found no indication that deglycosylation of SGAs takes place. We present additional evidence for apparent host-specific adaptation to potato SGAs and assess all results in terms of future pathogen management strategies.
Collapse
Affiliation(s)
- Paul Dahlin
- 1 Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 10691 Stockholm, Sweden
- 2 Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Marion C Müller
- 1 Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 10691 Stockholm, Sweden
- 2 Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Sophia Ekengren
- 1 Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 10691 Stockholm, Sweden
- 2 Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Lauren S McKee
- 1 Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 10691 Stockholm, Sweden
- 3 Wallenberg Wood Science Centre, Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91 Stockholm, Sweden; and
| | - Vincent Bulone
- 1 Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 10691 Stockholm, Sweden
- 4 ARC Centre of Excellence in Plant Cell Walls and School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064 Australia
| |
Collapse
|
23
|
Alkaloids from Veratrum taliense Exert Cardiovascular Toxic Effects via Cardiac Sodium Channel Subtype 1.5. Toxins (Basel) 2015; 8:toxins8010012. [PMID: 26729167 PMCID: PMC4728534 DOI: 10.3390/toxins8010012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 12/20/2015] [Accepted: 12/22/2015] [Indexed: 12/23/2022] Open
Abstract
Several species of the genus Veratrum that produce steroid alkaloids are commonly used to treat pain and hypertension in China and Europe. However, Veratrum alkaloids (VAs) induce serious cardiovascular toxicity. In China, Veratrum treatment often leads to many side effects and even causes the death of patients, but the pathophysiological mechanisms under these adverse effects are not clear. Here, two solanidine-type VAs (isorubijervine and rubijervine) isolated from Veratrum taliense exhibited strong cardiovascular toxicity. A pathophysiological study indicated that these VAs blocked sodium channels NaV1.3–1.5 and exhibited the strongest ability to inhibit NaV1.5, which is specifically expressed in cardiac tissue and plays an essential role in cardiac physiological function. This result reveals that VAs exert their cardiovascular toxicity via the NaV1.5 channel. The effects of VAs on NaV1.3 and NaV1.4 may be related to their analgesic effect and skeletal muscle toxicity, respectively.
Collapse
|