1
|
Millán-Márquez AM, Velasco-Montoya DA, Terraneo TI, Benzoni F, Bocanegra-Castaño C, Zapata FA. Symbiodiniaceae diversity in Pocillopora corals in different environments of the Colombian Eastern Pacific: symbiont specificity in spite of coral-host flexibility. CORAL REEFS 2024; 43:1581-1597. [DOI: 10.1007/s00338-024-02552-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/19/2024] [Indexed: 01/05/2025]
Abstract
AbstractReef-building corals live in close mutualism with dinoflagellate algae (family Symbiodiniaceae), which play key roles in coral physiological performance and survival. Association patterns between host species and endosymbiont algae and their significance are still not fully understood, but they seem to affect the ability of hosts to inhabit different environments and their resilience to climate change. In this work, we used next-generation sequencing of the Internal Transcribed Spacer 2 region of ribosomal DNA to determine the diversity and composition of the Symbiodiniaceae community in Pocillopora corals from Colombia, in the Eastern Tropical Pacific (ETP). We sampled 243 colonies from four localities characterized by distinct sea surface temperature, turbidity, and proximity to the coast. Two genera of Symbiodiniaceae, Durusdinium and Cladocopium were found associated with Pocillopora mitochondrial Open Reading Frame (mtORF) types. Cladocopium latusorum was highly specific to Pocillopora mtORF type 1, while C. pacificum was found exclusively associated with Pocillopora mtORF type 3. In contrast, Durusdinium glynnii was found in both Pocillopora mtORF types. Furthermore, a Cladocopium-dominated symbiont community occurred in cooler and less turbid localities, while a Durusdinium- dominated community was found in localities with high sea surface temperature and high water turbidity, irrespective of mtORF type. These results suggest that Pocillopora mtORF lineages associate with different Symbiodiniaceae genera in response to local environmental conditions. The ability to associate with a different partner under particular environmental conditions (Pocillopora-Durusdinium combination), and also maintain a specific partnership (Cladocopium species and Pocillopora mtORF types) may be key to understanding the resilience of the genus Pocillopora on ETP coral reefs.
Collapse
|
2
|
Gamba AG, Oakley CA, Ashley IA, Grossman AR, Weis VM, Suggett DJ, Davy SK. Oxylipin Receptors and Their Role in Inter-Partner Signalling in a Model Cnidarian-Dinoflagellate Symbiosis. Environ Microbiol 2024; 26:e70015. [PMID: 39702992 DOI: 10.1111/1462-2920.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/07/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024]
Abstract
Oxylipin signalling is central in biology, mediating processes such as cellular homeostasis, inflammation and molecular signalling. It may also facilitate inter-partner communication in the cnidarian-dinoflagellate symbiosis, though this aspect remains understudied. In this study, four oxylipin receptors were characterised using immunohistochemistry and immunoblotting in the sea anemone Exaiptasia diaphana ('Aiptasia'): Prostaglandin E2 receptor 2 (EP2) and 4 (EP4), Transient Receptor Potential cation channel A1 (TRPA1) and Glutamate Receptor Ionotropic, Kainate 2 (GRIK2). Receptor abundance and localisation were compared between aposymbiotic anemones and symbiotic anemones hosting either native Breviolum minutum or non-native Durusdinium trenchii. All receptors were localised to the putative symbiosome of freshly isolated symbionts, suggesting a role in host-symbiont crosstalk. EP2, EP4 and TRPA1 abundance decreased in the gastrodermis of anemones hosting B. minutum, indicating potential downregulation of pathways mediated by these receptors. In contrast, GRIK2 abundance increased in anemones hosting D. trenchii in both the epidermis and gastrodermis; GRIK2 acts as a chemosensor of potential pathogens in other systems and could play a similar role here given D. trenchii's reputation as a sub-optimal partner for Aiptasia. This study contributes to the understanding of oxylipin signalling in the cnidarian-dinoflagellate symbiosis and supports further exploration of host-symbiont molecular signalling.
Collapse
Affiliation(s)
- Andrea G Gamba
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Clinton A Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Immy A Ashley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Arthur R Grossman
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
| | - David J Suggett
- KAUST Reefscape Restoration Initiative (KRRI) and Red Sea Research Centre (RSRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
3
|
Scharfenstein HJ, Peplow LM, Alvarez-Roa C, Nitschke MR, Chan WY, Buerger P, van Oppen MJH. Pushing the limits: expanding the temperature tolerance of a coral photosymbiont through differing selection regimes. THE NEW PHYTOLOGIST 2024; 243:2130-2145. [PMID: 39049585 DOI: 10.1111/nph.19996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
Coral thermal bleaching resilience can be improved by enhancing photosymbiont thermal tolerance via experimental evolution. While successful for some strains, selection under stable temperatures was ineffective at increasing the thermal threshold of an already thermo-tolerant photosymbiont (Durusdinium trenchii). Corals from environments with fluctuating temperatures tend to have comparatively high heat tolerance. Therefore, we investigated whether exposure to temperature oscillations can raise the upper thermal limit of D. trenchii. We exposed a D. trenchii strain to stable and fluctuating temperature profiles, which varied in oscillation frequency. After 2.1 yr (54-73 generations), we characterised the adaptive responses under the various experimental evolution treatments by constructing thermal performance curves of growth from 21 to 31°C for the heat-evolved and wild-type lineages. Additionally, the accumulation of extracellular reactive oxygen species, photophysiology, photosynthesis and respiration rates were assessed under increasing temperatures. Of the fluctuating temperature profiles investigated, selection under the most frequent oscillations (diurnal) induced the greatest widening of D. trenchii's thermal niche. Continuous selection under elevated temperatures induced the only increase in thermal optimum and a degree of generalism. Our findings demonstrate how differing levels of thermal homogeneity during selection drive unique adaptive responses to heat in a coral photosymbiont.
Collapse
Affiliation(s)
- Hugo J Scharfenstein
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia
- Australian Institute of Marine Science, Townsville, Qld, 4810, Australia
| | - Lesa M Peplow
- Australian Institute of Marine Science, Townsville, Qld, 4810, Australia
| | - Carlos Alvarez-Roa
- Australian Institute of Marine Science, Townsville, Qld, 4810, Australia
| | - Matthew R Nitschke
- Australian Institute of Marine Science, Townsville, Qld, 4810, Australia
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand
| | - Wing Yan Chan
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia
| | - Patrick Buerger
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia
- Applied BioSciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Madeleine J H van Oppen
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia
- Australian Institute of Marine Science, Townsville, Qld, 4810, Australia
| |
Collapse
|
4
|
Deore P, Tsang Min Ching SJ, Nitschke MR, Rudd D, Brumley DR, Hinde E, Blackall LL, van Oppen MJH. Unique photosynthetic strategies employed by closely related Breviolum minutum strains under rapid short-term cumulative heat stress. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4005-4023. [PMID: 38636949 PMCID: PMC11233414 DOI: 10.1093/jxb/erae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/17/2024] [Indexed: 04/20/2024]
Abstract
The thermal tolerance of symbiodiniacean photo-endosymbionts largely underpins the thermal bleaching resilience of their cnidarian hosts such as corals and the coral model Exaiptasia diaphana. While variation in thermal tolerance between species is well documented, variation between conspecific strains is understudied. We compared the thermal tolerance of three closely related strains of Breviolum minutum represented by two internal transcribed spacer region 2 profiles (one strain B1-B1o-B1g-B1p and the other two strains B1-B1a-B1b-B1g) and differences in photochemical and non-photochemical quenching, de-epoxidation state of photopigments, and accumulation of reactive oxygen species under rapid short-term cumulative temperature stress (26-40 °C). We found that B. minutum strains employ distinct photoprotective strategies, resulting in different upper thermal tolerances. We provide evidence for previously unknown interdependencies between thermal tolerance traits and photoprotective mechanisms that include a delicate balancing of excitation energy and its dissipation through fast relaxing and state transition components of non-photochemical quenching. The more thermally tolerant B. minutum strain (B1-B1o-B1g-B1p) exhibited an enhanced de-epoxidation that is strongly linked to the thylakoid membrane melting point and possibly membrane rigidification minimizing oxidative damage. This study provides an in-depth understanding of photoprotective mechanisms underpinning thermal tolerance in closely related strains of B. minutum.
Collapse
Affiliation(s)
- Pranali Deore
- School of BioSciences, The University of Melbourne, Parkville 3010, Victoria, Australia
| | | | - Matthew R Nitschke
- Australian Institute of Marine Science, Townsville 4810, Queensland, Australia
- School of Biological Sciences, Victoria University of Wellington, Wellington 6102, New Zealand
| | - David Rudd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Douglas R Brumley
- School of Mathematics and Statistics, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Elizabeth Hinde
- School of Physics, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Linda L Blackall
- School of BioSciences, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Madeleine J H van Oppen
- School of BioSciences, The University of Melbourne, Parkville 3010, Victoria, Australia
- Australian Institute of Marine Science, Townsville 4810, Queensland, Australia
| |
Collapse
|
5
|
Bartels N, Matthews JL, Lawson CA, Possell M, Hughes DJ, Raina JB, Suggett DJ. Paired metabolomics and volatilomics provides insight into transient high light stress response mechanisms of the coral Montipora mollis. Metabolomics 2024; 20:66. [PMID: 38886248 PMCID: PMC11182861 DOI: 10.1007/s11306-024-02136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024]
Abstract
The coral holobiont is underpinned by complex metabolic exchanges between different symbiotic partners, which are impacted by environmental stressors. The chemical diversity of the compounds produced by the holobiont is high and includes primary and secondary metabolites, as well as volatiles. However, metabolites and volatiles have only been characterised in isolation so far. Here, we applied a paired metabolomic-volatilomic approach to characterise holistically the chemical response of the holobiont under stress. Montipora mollis fragments were subjected to high-light stress (8-fold higher than the controls) for 30 min. Photosystem II (PSII) photochemical efficiency values were 7-fold higher in control versus treatment corals immediately following high-light exposure, but returned to pre-stress levels after 30 min of recovery. Under high-light stress, we identified an increase in carbohydrates (> 5-fold increase in arabinose and fructose) and saturated fatty acids (7-fold increase in myristic and oleic acid), together with a decrease in fatty acid derivatives in both metabolites and volatiles (e.g., 80% decrease in oleamide and nonanal), and other antioxidants (~ 85% decrease in sorbitol and galactitol). These changes suggest short-term light stress induces oxidative stress. Correlation analysis between volatiles and metabolites identified positive links between sorbitol, galactitol, six other metabolites and 11 volatiles, with four of these compounds previously identified as antioxidants. This suggests that these 19 compounds may be related and share similar functions. Taken together, our findings demonstrate how paired metabolomics-volatilomics may illuminate broader metabolic shifts occurring under stress and identify linkages between uncharacterised compounds to putatively determine their functions.
Collapse
Affiliation(s)
- Natasha Bartels
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia.
| | - Jennifer L Matthews
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Caitlin A Lawson
- Heron Island Research Station, Faculty of Science, University of Queensland, Gladstone, 4680, Australia
| | - Malcolm Possell
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - David J Hughes
- National Sea Simulator, Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Jean-Baptiste Raina
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - David J Suggett
- KAUST Reefscape Restoration Initiative (KRRI) and Red Sea Research Center (RSRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
6
|
Johnston EC, Caruso C, Mujica E, Walker NS, Drury C. Complex parental effects impact variation in larval thermal tolerance in a vertically transmitting coral. Heredity (Edinb) 2024; 132:275-283. [PMID: 38538721 PMCID: PMC11167003 DOI: 10.1038/s41437-024-00681-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 06/13/2024] Open
Abstract
Coral populations must be able to adapt to changing environmental conditions for coral reefs to persist under climate change. The adaptive potential of these organisms is difficult to forecast due to complex interactions between the host animal, dinoflagellate symbionts and the environment. Here we created 26 larval families from six Montipora capitata colonies from a single reef, showing significant, heritable variation in thermal tolerance. Our results indicate that 9.1% of larvae are expected to exhibit four times the thermal tolerance of the general population. Differences in larval thermotolerance were driven mainly by maternal contributions, but we found no evidence that these effects were driven by symbiont identity despite vertical transmission from the dam. We also document no evidence of reproductive incompatibility attributable to symbiont identity. These data demonstrate significant genetic variation within this population which provides the raw material upon which natural selection can act.
Collapse
Affiliation(s)
- Erika C Johnston
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI, USA.
| | - Carlo Caruso
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI, USA
| | - Elena Mujica
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Nia S Walker
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI, USA
| | - Crawford Drury
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI, USA
| |
Collapse
|
7
|
Zhou S, Chen T, Fu ES, Zhou T, Shi L, Yan H. A microfluidic microalgae detection system for cellular physiological response based on an object detection algorithm. LAB ON A CHIP 2024; 24:2762-2773. [PMID: 38682283 DOI: 10.1039/d3lc00941f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The composition of species and the physiological status of microalgal cells serve as significant indicators for monitoring marine environments. Symbiotic with corals, Symbiodiniaceae are more sensitive to the environmental response. However, current methods for evaluating microalgae tend to be population-based indicators that cannot be focused on single-cell level, ignoring potentially heterogeneous cells as well as cell state transitions. In this study, we proposed a microalgal cell detection method based on computer vision and microfluidics, which combined microscopic image processing, microfluidic chip and convolutional neural network to achieve label-free, sheathless, automated and high-throughput microalgae identification and cell state assessment. By optimizing the data import, training process and model architecture, we solved the problem of identifying tiny objects at the micron scale, and the optimized model was able to perform the tasks of cell multi-classification and physiological state assessment with more than 95% mean average precision. We discovered a novel transition state and explored the thermal sensitivity of three clades of Symbiodiniaceae, and discovered the phenomenon of cellular heat shock at high temperatures. The evolution of the physiological state of Symbiodiniaceae cells is very important for directional cell evolution and early warning of coral ecosystem health.
Collapse
Affiliation(s)
- Shizheng Zhou
- School of Computer Science and Technology, Hainan University, Haikou 570228, China.
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Tianhui Chen
- School of Computer Science and Technology, Hainan University, Haikou 570228, China.
| | - Edgar S Fu
- Graduate School of Computing and Information Science, University of Pittsburgh, PA 15260, USA
| | - Teng Zhou
- School of Mechanical and Electrical Engineering, Hainan University, Haikou 570228, China
| | - Liuyong Shi
- School of Mechanical and Electrical Engineering, Hainan University, Haikou 570228, China
| | - Hong Yan
- School of Computer Science and Technology, Hainan University, Haikou 570228, China.
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| |
Collapse
|
8
|
Bhattacharya D, Stephens TG, Chille EE, Benites LF, Chan CX. Facultative lifestyle drives diversity of coral algal symbionts. Trends Ecol Evol 2024; 39:239-247. [PMID: 37953106 DOI: 10.1016/j.tree.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023]
Abstract
The photosynthetic symbionts of corals sustain biodiverse reefs in nutrient-poor, tropical waters. Recent genomic data illuminate the evolution of coral symbionts under genome size constraints and suggest that retention of the facultative lifestyle, widespread among these algae, confers a selective advantage when compared with a strict symbiotic existence. We posit that the coral symbiosis is analogous to a 'bioreactor' that selects winner genotypes and allows them to rise to high numbers in a sheltered habitat prior to release by the coral host. Our observations lead to a novel hypothesis, the 'stepping-stone model', which predicts that local adaptation under both the symbiotic and free-living stages, in a stepwise fashion, accelerates coral alga diversity and the origin of endemic strains and species.
Collapse
Affiliation(s)
- Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA.
| | - Timothy G Stephens
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Erin E Chille
- Ecology and Evolution Graduate Program, Rutgers University, New Brunswick, NJ 08901, USA
| | - L Felipe Benites
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Cheong Xin Chan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072, QLD, Australia.
| |
Collapse
|
9
|
Matthews JL, Ueland M, Bartels N, Lawson CA, Lockwood TE, Wu Y, Camp EF. Multi-Chemical Omics Analysis of the Symbiodiniaceae Durusdinium trenchii under Heat Stress. Microorganisms 2024; 12:317. [PMID: 38399721 PMCID: PMC10893086 DOI: 10.3390/microorganisms12020317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The urgency of responding to climate change for corals necessitates the exploration of innovative methods to swiftly enhance our understanding of crucial processes. In this study, we employ an integrated chemical omics approach, combining elementomics, metabolomics, and volatilomics methodologies to unravel the biochemical pathways associated with the thermal response of the coral symbiont, Symbiodiniaceae Durusdinium trenchii. We outline the complimentary sampling approaches and discuss the standardised data corrections used to allow data integration and comparability. Our findings highlight the efficacy of individual methods in discerning differences in the biochemical response of D. trenchii under both control and stress-inducing temperatures. However, a deeper insight emerges when these methods are integrated, offering a more comprehensive understanding, particularly regarding oxidative stress pathways. Employing correlation network analysis enhanced the interpretation of volatile data, shedding light on the potential metabolic origins of volatiles with undescribed functions and presenting promising candidates for further exploration. Elementomics proves to be less straightforward to integrate, likely due to no net change in elements but rather elements being repurposed across compounds. The independent and integrated data from this study informs future omic profiling studies and recommends candidates for targeted research beyond Symbiodiniaceae biology. This study highlights the pivotal role of omic integration in advancing our knowledge, addressing critical gaps, and guiding future research directions in the context of climate change and coral reef preservation.
Collapse
Affiliation(s)
- Jennifer L. Matthews
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Maiken Ueland
- Centre for Forensic Sciences, School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Hyphenated Mass Spectrometry Laboratory, School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Natasha Bartels
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Caitlin A. Lawson
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, NSW 2258, Australia
| | - Thomas E. Lockwood
- Hyphenated Mass Spectrometry Laboratory, School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Yida Wu
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Emma F. Camp
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
10
|
Maire J, Deore P, Jameson VJ, Sakkas M, Perez-Gonzalez A, Blackall LL, van Oppen MJH. Assessing the contribution of bacteria to the heat tolerance of experimentally evolved coral photosymbionts. Environ Microbiol 2023; 25:3298-3318. [PMID: 37849020 DOI: 10.1111/1462-2920.16521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023]
Abstract
Coral reefs are extremely vulnerable to ocean warming, which triggers coral bleaching-the loss of endosymbiotic microalgae (Symbiodiniaceae) from coral tissues, often leading to death. To enhance coral climate resilience, the symbiont, Cladocopium proliferum was experimentally evolved for >10 years under elevated temperatures resulting in increased heat tolerance. Bacterial 16S rRNA gene metabarcoding showed the composition of intra- and extracellular bacterial communities of heat-evolved strains was significantly different from that of wild-type strains, suggesting bacteria responded to elevated temperatures, and may even play a role in C. proliferum thermal tolerance. To assess whether microbiome transplantation could enhance heat tolerance of the sensitive wild-type C. proliferum, we transplanted bacterial communities from heat-evolved to the wild-type strain and subjected it to acute heat stress. Microbiome transplantation resulted in the incorporation of only 30 low-abundance strains into the microbiome of wild-type cultures, while the relative abundance of 14 pre-existing strains doubled in inoculated versus uninoculated samples. Inoculation with either wild-type or heat-evolved bacterial communities boosted C. proliferum growth, although no difference in heat tolerance was observed between the two inoculation treatments. This study provides evidence that Symbiodiniaceae-associated bacterial communities respond to heat selection and may contribute to coral adaptation to climate change.
Collapse
Affiliation(s)
- Justin Maire
- School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Pranali Deore
- School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Vanta J Jameson
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute of Infection and Immunity, Parkville, Victoria, Australia
- Melbourne Cytometry Platform, The University of Melbourne, Parkville, Victoria, Australia
| | - Magdaline Sakkas
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute of Infection and Immunity, Parkville, Victoria, Australia
- Melbourne Cytometry Platform, The University of Melbourne, Parkville, Victoria, Australia
| | - Alexis Perez-Gonzalez
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute of Infection and Immunity, Parkville, Victoria, Australia
- Melbourne Cytometry Platform, The University of Melbourne, Parkville, Victoria, Australia
| | - Linda L Blackall
- School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Madeleine J H van Oppen
- School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| |
Collapse
|
11
|
Bay LK, Gilmour J, Muir B, Hardisty PE. Management approaches to conserve Australia's marine ecosystem under climate change. Science 2023; 381:631-636. [PMID: 37561873 DOI: 10.1126/science.adi3023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/23/2023] [Indexed: 08/12/2023]
Abstract
Australia's coastal marine ecosystems have a deep cultural significance to Indigenous Australians, include multiple World Heritage sites, and support the nation's rapidly growing blue economy. Yet, increasing local pressures and global climate change are expected to undermine the biological, social, cultural, and economic value of these ecosystems within a human generation. Mitigating the causes of climate change is the most urgent action to secure their future; however, conventional and new management actions will play roles in preserving ecosystem function and value until that is achieved. This includes strategies codeveloped with Indigenous Australians that are guided by traditional ecological knowledge and a modeling and decision support framework. We provide examples of developments at one of Australia's most iconic ecosystems, the Great Barrier Reef, where recent, large block funding supports research, governance, and engagement to accelerate the development of tools for management under climate change.
Collapse
Affiliation(s)
- Line K Bay
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - James Gilmour
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Bob Muir
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Paul E Hardisty
- Australian Institute of Marine Science, Townsville, QLD, Australia
| |
Collapse
|
12
|
Wuerz M, Lawson CA, Oakley CA, Possell M, Wilkinson SP, Grossman AR, Weis VM, Suggett DJ, Davy SK. Symbiont Identity Impacts the Microbiome and Volatilome of a Model Cnidarian-Dinoflagellate Symbiosis. BIOLOGY 2023; 12:1014. [PMID: 37508443 PMCID: PMC10376011 DOI: 10.3390/biology12071014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
The symbiosis between cnidarians and dinoflagellates underpins the success of reef-building corals in otherwise nutrient-poor habitats. Alterations to symbiotic state can perturb metabolic homeostasis and thus alter the release of biogenic volatile organic compounds (BVOCs). While BVOCs can play important roles in metabolic regulation and signalling, how the symbiotic state affects BVOC output remains unexplored. We therefore characterised the suite of BVOCs that comprise the volatilome of the sea anemone Exaiptasia diaphana ('Aiptasia') when aposymbiotic and in symbiosis with either its native dinoflagellate symbiont Breviolum minutum or the non-native symbiont Durusdinium trenchii. In parallel, the bacterial community structure in these different symbiotic states was fully characterised to resolve the holobiont microbiome. Based on rRNA analyses, 147 unique amplicon sequence variants (ASVs) were observed across symbiotic states. Furthermore, the microbiomes were distinct across the different symbiotic states: bacteria in the family Vibrionaceae were the most abundant in aposymbiotic anemones; those in the family Crocinitomicaceae were the most abundant in anemones symbiotic with D. trenchii; and anemones symbiotic with B. minutum had the highest proportion of low-abundance ASVs. Across these different holobionts, 142 BVOCs were detected and classified into 17 groups based on their chemical structure, with BVOCs containing multiple functional groups being the most abundant. Isoprene was detected in higher abundance when anemones hosted their native symbiont, and dimethyl sulphide was detected in higher abundance in the volatilome of both Aiptasia-Symbiodiniaceae combinations relative to aposymbiotic anemones. The volatilomes of aposymbiotic anemones and anemones symbiotic with B. minutum were distinct, while the volatilome of anemones symbiotic with D. trenchii overlapped both of the others. Collectively, our results are consistent with previous reports that D. trenchii produces a metabolically sub-optimal symbiosis with Aiptasia, and add to our understanding of how symbiotic cnidarians, including corals, may respond to climate change should they acquire novel dinoflagellate partners.
Collapse
Affiliation(s)
- Maggie Wuerz
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Caitlin A. Lawson
- Climate Change Cluster, University of Technology Sydney, Sydney Broadway, Sydney, NSW 2007, Australia
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Clinton A. Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Malcolm Possell
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | | | - Arthur R. Grossman
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA 94305, USA
| | - Virginia M. Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - David J. Suggett
- Climate Change Cluster, University of Technology Sydney, Sydney Broadway, Sydney, NSW 2007, Australia
- KAUST Reefscape Restoration Initiative (KRRI) and Red Sea Research Center (RSRC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Simon K. Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
13
|
Maire J, Tandon K, Collingro A, van de Meene A, Damjanovic K, Gotze CR, Stephenson S, Philip GK, Horn M, Cantin NE, Blackall LL, van Oppen MJH. Colocalization and potential interactions of Endozoicomonas and chlamydiae in microbial aggregates of the coral Pocillopora acuta. SCIENCE ADVANCES 2023; 9:eadg0773. [PMID: 37196086 DOI: 10.1126/sciadv.adg0773] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/13/2023] [Indexed: 05/19/2023]
Abstract
Corals are associated with a variety of bacteria, which occur in the surface mucus layer, gastrovascular cavity, skeleton, and tissues. Some tissue-associated bacteria form clusters, termed cell-associated microbial aggregates (CAMAs), which are poorly studied. Here, we provide a comprehensive characterization of CAMAs in the coral Pocillopora acuta. Combining imaging techniques, laser capture microdissection, and amplicon and metagenome sequencing, we show that (i) CAMAs are located in the tentacle tips and may be intracellular; (ii) CAMAs contain Endozoicomonas (Gammaproteobacteria) and Simkania (Chlamydiota) bacteria; (iii) Endozoicomonas may provide vitamins to its host and use secretion systems and/or pili for colonization and aggregation; (iv) Endozoicomonas and Simkania occur in distinct, but adjacent, CAMAs; and (v) Simkania may receive acetate and heme from neighboring Endozoicomonas. Our study provides detailed insight into coral endosymbionts, thereby improving our understanding of coral physiology and health and providing important knowledge for coral reef conservation in the climate change era.
Collapse
Affiliation(s)
- Justin Maire
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kshitij Tandon
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Astrid Collingro
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna 1030, Austria
| | - Allison van de Meene
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Katarina Damjanovic
- Australian Institute of Marine Science, PMB No 3, Townsville, QLD 4810, Australia
| | - Cecilie Ravn Gotze
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Australian Institute of Marine Science, PMB No 3, Townsville, QLD 4810, Australia
| | - Sophie Stephenson
- Australian Institute of Marine Science, PMB No 3, Townsville, QLD 4810, Australia
| | - Gayle K Philip
- Melbourne Bioinformatics, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Matthias Horn
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna 1030, Austria
| | - Neal E Cantin
- Australian Institute of Marine Science, PMB No 3, Townsville, QLD 4810, Australia
| | - Linda L Blackall
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Madeleine J H van Oppen
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Australian Institute of Marine Science, PMB No 3, Townsville, QLD 4810, Australia
| |
Collapse
|
14
|
Ashley IA, Kitchen SA, Gorman LM, Grossman AR, Oakley CA, Suggett DJ, Weis VM, Rosset SL, Davy SK. Genomic conservation and putative downstream functionality of the phosphatidylinositol signalling pathway in the cnidarian-dinoflagellate symbiosis. Front Microbiol 2023; 13:1094255. [PMID: 36777026 PMCID: PMC9909359 DOI: 10.3389/fmicb.2022.1094255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/28/2022] [Indexed: 01/28/2023] Open
Abstract
The mutualistic cnidarian-dinoflagellate symbiosis underpins the evolutionary success of stony corals and the persistence of coral reefs. However, a molecular understanding of the signalling events that lead to the successful establishment and maintenance of this symbiosis remains unresolved. For example, the phosphatidylinositol (PI) signalling pathway has been implicated during the establishment of multiple mutualistic and parasitic interactions across the kingdoms of life, yet its role within the cnidarian-dinoflagellate symbiosis remains unexplored. Here, we aimed to confirm the presence and assess the specific enzymatic composition of the PI signalling pathway across cnidaria and dinoflagellates by compiling 21 symbiotic anthozoan (corals and sea anemones) and 28 symbiotic dinoflagellate (Symbiodiniaceae) transcriptomic and genomic datasets and querying genes related to this pathway. Presence or absence of PI-kinase and PI-phosphatase orthologs were also compared between a broad sampling of taxonomically related symbiotic and non-symbiotic species. Across the symbiotic anthozoans analysed, there was a complete and highly conserved PI pathway, analogous to the pathway found in model eukaryotes. The Symbiodiniaceae pathway showed similarities to its sister taxon, the Apicomplexa, with the absence of PI 4-phosphatases. However, conversely to Apicomplexa, there was also an expansion of homologs present in the PI5-phosphatase and PI5-kinase groups, with unique Symbiodiniaceae proteins identified that are unknown from non-symbiotic unicellular organisms. Additionally, we aimed to unravel the putative functionalities of the PI signalling pathway in this symbiosis by analysing phosphoinositide (PIP)-binding proteins. Analysis of phosphoinositide (PIP)-binding proteins showed that, on average, 2.23 and 1.29% of the total assemblies of anthozoan and Symbiodiniaceae, respectively, have the potential to bind to PIPs. Enrichment of Gene Ontology (GO) terms associated with predicted PIP-binding proteins within each taxon revealed a broad range of functions, including compelling links to processes putatively involved in symbiosis regulation. This analysis establishes a baseline for current understanding of the PI pathway across anthozoans and Symbiodiniaceae, and thus a framework to target future research.
Collapse
Affiliation(s)
- Immy A. Ashley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Sheila A. Kitchen
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, United States
| | - Lucy M. Gorman
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Arthur R. Grossman
- Department of Plant Biology, The Carnegie Institution, Stanford, CA, United States
| | - Clinton A. Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - David J. Suggett
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Broadway, NSW, Australia
| | - Virginia M. Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Sabrina L. Rosset
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Simon K. Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand,*Correspondence: Simon K. Davy,
| |
Collapse
|
15
|
Similarities in biomass and energy reserves among coral colonies from contrasting reef environments. Sci Rep 2023; 13:1355. [PMID: 36693980 PMCID: PMC9873650 DOI: 10.1038/s41598-023-28289-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Coral reefs are declining worldwide, yet some coral populations are better adapted to withstand reductions in pH and the rising frequency of marine heatwaves. The nearshore reef habitats of Palau, Micronesia are a proxy for a future of warmer, more acidic oceans. Coral populations in these habitats can resist, and recover from, episodes of thermal stress better than offshore conspecifics. To explore the physiological basis of this tolerance, we compared tissue biomass (ash-free dry weight cm-2), energy reserves (i.e., protein, total lipid, carbohydrate content), and several important lipid classes in six coral species living in both offshore and nearshore environments. In contrast to expectations, a trend emerged of many nearshore colonies exhibiting lower biomass and energy reserves than colonies from offshore sites, which may be explained by the increased metabolic demand of living in a warmer, acidic, environment. Despite hosting different dinoflagellate symbiont species and having access to contrasting prey abundances, total lipid and lipid class compositions were similar in colonies from each habitat. Ultimately, while the regulation of colony biomass and energy reserves may be influenced by factors, including the identity of the resident symbiont, kind of food consumed, and host genetic attributes, these independent processes converged to a similar homeostatic set point under different environmental conditions.
Collapse
|