1
|
Smout MJ, Laha T, Chaiyadet S, Brindley PJ, Loukas A. Mechanistic insights into liver-fluke-induced bile-duct cancer. Trends Parasitol 2024; 40:1183-1196. [PMID: 39521672 DOI: 10.1016/j.pt.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Liver fluke infection is a major risk for cholangiocarcinoma (CCA). It has been established that the Asian liver flukes, Clonorchis sinensis and Opisthorchis viverrini secrete growth factors, digestive enzymes, and extracellular vesicles (EVs) which contribute to abnormal cell development in the bile ducts where the worms reside. These secretions - combined with aberrant inflammation and repeated cycles of chronic wounding at the site of parasite attachment and grazing on the epithelium - promote biliary hyperplasia and fibrosis and ultimately malignant transformation. Application of post-genomic and gene-editing tools to the study of liver fluke immunobiology and pathogenesis has accelerated the discovery of essential virulence factors to which targeted therapies and diagnostics can be directed.
Collapse
Affiliation(s)
- Michael J Smout
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Thailand
| | - Sujittra Chaiyadet
- Tropical Medicine Graduate Program, Academic Affairs, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Paul J Brindley
- Department of Microbiology, Immunology, and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, George Washington University, Washington, DC, USA
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia.
| |
Collapse
|
2
|
Liau MYQ, Toh EQ, Shelat VG. Opisthorchis viverrini-Current Understanding of the Neglected Hepatobiliary Parasite. Pathogens 2023; 12:795. [PMID: 37375485 DOI: 10.3390/pathogens12060795] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Opisthorchiasis due to Opisthorchis viverrini infection continues to be a significant public healthcare concern in various subregions of Southeast Asia, particularly in Thailand, Laos, Cambodia, Myanmar, and Vietnam. The main mode of transmission is via consumption of raw or undercooked fish, which is deeply embedded in the culture and tradition of the people living near the Mekong River. After ingestion, the flukes migrate to the bile ducts, potentially causing many hepatobiliary complications, including cholangitis, cholecystitis, cholelithiasis, advanced periductal fibrosis and cholangiocarcinoma. Several mechanisms of opisthorchiasis-associated cholangiocarcinogenesis have been proposed and elucidated in the past decade, providing insight and potential drug targets to prevent the development of the sinister complication. The gold standard for diagnosing opisthorchiasis is still via stool microscopy, but the advent of novel serological, antigen, and molecular tests shows promise as more convenient, alternative diagnostic methods. The mainstay of treatment of opisthorchiasis is praziquantel, while treatment of opisthorchiasis-associated cholangiocarcinoma depends on its anatomic subtype and resectability. Thus far, the most successful fluke control programme is the Lawa model based in Thailand, which raised awareness, incorporated education, and frequent surveillance of intermediate hosts to reduce transmission of opisthorchiasis. Development of vaccines using tetraspanins shows promise and is currently ongoing.
Collapse
Affiliation(s)
- Matthias Yi Quan Liau
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232, Singapore
| | - En Qi Toh
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232, Singapore
| | - Vishalkumar Girishchandra Shelat
- Department of General Surgery, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
- Surgical Science Training Centre, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| |
Collapse
|
3
|
Chaiyadet S, Tangkawattana S, Smout MJ, Ittiprasert W, Mann VH, Deenonpoe R, Arunsan P, Loukas A, Brindley PJ, Laha T. Knockout of liver fluke granulin, Ov-grn-1, impedes malignant transformation during chronic infection with Opisthorchis viverrini. PLoS Pathog 2022; 18:e1010839. [PMID: 36137145 PMCID: PMC9531791 DOI: 10.1371/journal.ppat.1010839] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 10/04/2022] [Accepted: 08/29/2022] [Indexed: 01/21/2023] Open
Abstract
Infection with the food-borne liver fluke Opisthorchis viverrini is the principal risk factor for cholangiocarcinoma (CCA) in the Mekong Basin countries of Thailand, Lao PDR, Vietnam, Myanmar and Cambodia. Using a novel model of CCA, involving infection with gene-edited liver flukes in the hamster during concurrent exposure to dietary nitrosamine, we explored the role of the fluke granulin-like growth factor Ov-GRN-1 in malignancy. We derived RNA-guided gene knockout flukes (ΔOv-grn-1) using CRISPR/Cas9/gRNA materials delivered by electroporation. Genome sequencing confirmed programmed Cas9-catalyzed mutations of the targeted genes, which was accompanied by rapid depletion of transcripts and the proteins they encode. Gene-edited parasites colonized the biliary tract of hamsters and developed into adult flukes. However, less hepatobiliary tract disease manifested during chronic infection with ΔOv-grn-1 worms in comparison to hamsters infected with control gene-edited and mock-edited parasites. Specifically, immuno- and colorimetric-histochemical analysis of livers revealed markedly less periductal fibrosis surrounding the flukes and less fibrosis globally within the hepatobiliary tract during infection with ΔOv-grn-1 genotype worms, minimal biliary epithelial cell proliferation, and significantly fewer mutations of TP53 in biliary epithelial cells. Moreover, fewer hamsters developed high-grade CCA compared to controls. The clinically relevant, pathophysiological phenotype of the hepatobiliary tract confirmed a role for this secreted growth factor in malignancy and morbidity during opisthorchiasis.
Collapse
Affiliation(s)
- Sujittra Chaiyadet
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Tropical Medicine Graduate Program, Academic Affairs, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sirikachorn Tangkawattana
- Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand, and WHO Collaborating Center for Research and Control of Opisthorchiasis, Tropical Disease Research Center, Khon Kaen University, Khon Kaen, Thailand
| | - Michael J. Smout
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Wannaporn Ittiprasert
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, District of Columbia, United States of America
| | - Victoria H. Mann
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, District of Columbia, United States of America
| | - Raksawan Deenonpoe
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Patpicha Arunsan
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, District of Columbia, United States of America
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Paul J. Brindley
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, District of Columbia, United States of America
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
4
|
Recent Progress in the Development of Liver Fluke and Blood Fluke Vaccines. Vaccines (Basel) 2020; 8:vaccines8030553. [PMID: 32971734 PMCID: PMC7564142 DOI: 10.3390/vaccines8030553] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
Liver flukes (Fasciola spp., Opisthorchis spp., Clonorchis sinensis) and blood flukes (Schistosoma spp.) are parasitic helminths causing neglected tropical diseases that result in substantial morbidity afflicting millions globally. Affecting the world’s poorest people, fasciolosis, opisthorchiasis, clonorchiasis and schistosomiasis cause severe disability; hinder growth, productivity and cognitive development; and can end in death. Children are often disproportionately affected. F. hepatica and F. gigantica are also the most important trematode flukes parasitising ruminants and cause substantial economic losses annually. Mass drug administration (MDA) programs for the control of these liver and blood fluke infections are in place in a number of countries but treatment coverage is often low, re-infection rates are high and drug compliance and effectiveness can vary. Furthermore, the spectre of drug resistance is ever-present, so MDA is not effective or sustainable long term. Vaccination would provide an invaluable tool to achieve lasting control leading to elimination. This review summarises the status currently of vaccine development, identifies some of the major scientific targets for progression and briefly discusses future innovations that may provide effective protective immunity against these helminth parasites and the diseases they cause.
Collapse
|
5
|
Kokova D, Verhoeven A, Perina EA, Ivanov VV, Knyazeva EM, Saltykova IV, Mayboroda OA. Plasma metabolomics of the time resolved response to Opisthorchis felineus infection in an animal model (golden hamster, Mesocricetus auratus). PLoS Negl Trop Dis 2020; 14:e0008015. [PMID: 31978047 PMCID: PMC7002010 DOI: 10.1371/journal.pntd.0008015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 02/05/2020] [Accepted: 12/24/2019] [Indexed: 01/15/2023] Open
Abstract
Background Opisthorchiasis is a hepatobiliary disease caused by flukes of the trematode family Opisthorchiidae. Opisthorchiasis can lead to severe hepatobiliary morbidity and is classified as a carcinogenic agent. Here we investigate the time-resolved metabolic response to Opisthorchis felineus infection in an animal model. Methodology Thirty golden hamsters were divided in three groups: severe infection (50 metacercariae/hamster), mild infection (15 metacercariae/hamster) and uninfected (vehicle-PBS) groups. Each group consisted of equal number of male and female animals. Plasma samples were collected one day before the infection and then every two weeks up to week 22 after infection. The samples were subjected to 1H Nuclear Magnetic Resonance (NMR) spectroscopy and multivariate statistical modelling. Principal findings The time-resolved study of the metabolic response to Opisthorchis infection in plasma in the main lines agrees with our previous report on urine data. The response reaches its peak around the 4th week of infection and stabilizes after the 10th week. Yet, unlike the urinary data there is no strong effect of the gender in the data and the intensity of infection is presented in the first two principal components of the PCA model. The main trends of the metabolic response to the infection in blood plasma are the transient depletion of essential amino acids and an increase in lipoprotein and cholesterol concentrations. Conclusions The time resolved metabolic signature of Opisthorchis infection in the hamster’s plasma shows a coherent shift in amino acids and lipid metabolism. Our work provides insight into the metabolic basis of the host response on the helminth infection. Opisthorchiasis is a parasitic infection caused by liver flukes of the Opisthorchiidae family. The liver fluke infection triggers development of hepatobiliary pathologies such as chronic forms of cholecystitis, cholangitis, pancreatitis, and cholelithiasis and increases the risk of intrahepatic cholangiocarcinoma. This manuscript is the second part of our outgoing project dedicated to a comprehensive description of the metabolic response to opisthorchiasis (more specifically Opisthorchis felineus) in an animal model. We show that the metabolic response in blood plasma is unfolding according to the same scenario as in urine, reaching its peak at the 4th week and stabilizing after the 10th week post-infection. Yet, unlike the response described in urine, the observed metabolic response in plasma is less gender specific. Moreover, the biochemical basis of the detected response in blood plasma is restricted to the remodeling of the lipid metabolism and the transient depletion of essential amino acids. Together with our first manuscript this report forms the first systematic description of the metabolic response on opisthorchiasis in an animal model using two easily accessible biofluids. Thus, this contribution provides novel results and fills an information gap still existing in the analytically driven characterization of the “Siberian liver fluke”, Opisthorchis felineus.
Collapse
Affiliation(s)
- Daria Kokova
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Laboratory of clinical metabolomics, Tomsk State University, Tomsk, Russia
- * E-mail:
| | - Aswin Verhoeven
- Center for Proteomics and Metabolomics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Ekaterina A. Perina
- Central Research Laboratory Siberian State Medical University, Tomsk, Russian Federation
| | - Vladimir V. Ivanov
- Central Research Laboratory Siberian State Medical University, Tomsk, Russian Federation
| | - Elena M. Knyazeva
- School of Core Engineering Education, National Research Tomsk Polytechnic University, Tomsk, Russian Federation
| | - Irina V. Saltykova
- Central Research Laboratory Siberian State Medical University, Tomsk, Russian Federation
| | - Oleg A. Mayboroda
- Center for Proteomics and Metabolomics, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
6
|
Immune Response to Opisthorchis viverrini Infection and Its Role in Pathology. ADVANCES IN PARASITOLOGY 2018; 102:73-95. [PMID: 30442311 DOI: 10.1016/bs.apar.2018.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human liver fluke infection caused by Opisthorchis viverrini is a major public health problem in Mekong countries such as Thailand, Laos, Cambodia, Vietnam, and Myanmar with over 10 million infected through consumption of fish containing infective metacercariae. With no tissue migration phase and living entirely within the larger secondary (intrahepatic) bile ducts, liver flukes are only exposed to a biliary mucosal immune response, while their excretory and secretory products also stimulate chronic inflammation of biliary epithelium. Neither mucosal nor tissue immune responses appear to cause parasite death or protect against newly established flukes, as evidenced by the persistence of infection for decades in the body and rapid reinfection following treatment. Experimental studies suggest that specific immune suppressive mechanisms may promote parasite persistence, therefore allowing continued secretion of parasite products that damage the biliary epithelium, both directly through mechanical damage and mitogenicity and through innate and adaptive inflammatory responses. Chronic infection is associated with several hepatobiliary diseases, specifically gallbladder and bile duct inflammation (cholecystitis and cholangitis), periductal fibrosis, and cholangiocarcinoma, the fatal bile duct cancer. Various studies have linked the chronic immune response to parasite antigens to both fibrosis and many steps in the carcinogenic process. Here, we review research-based understandings of the basic immune response to liver fluke infection and its roles in host protection and immunopathogenesis from available literature and also from recent studies conducted by the authors.
Collapse
|