1
|
Alshaghdali K, Tasleem M, Rezgui R, Alharazi T, Acar T, Aljerwan RF, Altayyar A, Siddiqui S, Saeed M, Yadav DK, Saeed A. C ucumis melo compounds: A new avenue for ALR-2 inhibition in diabetes mellitus. Heliyon 2024; 10:e35255. [PMID: 39170458 PMCID: PMC11336452 DOI: 10.1016/j.heliyon.2024.e35255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024] Open
Abstract
Diabetes mellitus (DM) is a prominent contributor to morbidity and mortality in developed nations, primarily attributable to vascular complications such as atherothrombosis occurring in the coronary arteries. Aldose reductase (ALR2), the main enzyme in the polyol pathway, catalyzes the conversion of glucose to sorbitol, leading to a significant buildup of reactive oxygen species in different tissues. It is therefore a prime candidate for therapeutic targeting, and extensive study is currently underway to discover novel natural compounds that can inhibit it. Cucumis melo (C. melo) has a long history as a lipid-lowering ethanopharmaceutical plant. In this study, compounds derived from C. melo were computationally evaluated as possible lead candidates. Various computational filtering methods were employed to assess the drug-like properties and ADMET (absorption, distribution, metabolism, excretion, and toxicity) profiles of the compounds. The compounds were subsequently addressed to analysis of their interactions, molecular docking, and molecular dynamics simulation studies. When compared to the conventional therapeutic compounds, three compounds exhibited enhanced binding affinity and intra-molecular residue interactions, resulting in increased stability and specificity. Consequently, four potent inhibitors, namely PubChem CIDs 119205, 65373, 6184, and 332427, have been identified. These inhibitors exhibit promising potential as pharmacological targets for the advancement of novel ALR-2 inhibitors.
Collapse
Affiliation(s)
- Khalid Alshaghdali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | | | - Raja Rezgui
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Talal Alharazi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Health Sciences, Taiz University, Taiz, Yemen
| | - Tolgahan Acar
- Department of Physical Therapy, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | | | - Ahmed Altayyar
- Regional Laboratory, Ministry of Health, Hail, Saudi Arabia
| | - Samra Siddiqui
- Department of Health Service Management, College of Public Health and Health Informatics, University of Hail, Hail, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
- Centre for Global Health Research Saveetha Medical College Chennai - 602105, Tamil Nadu India
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsugu, Incheon City, 21924, South Korea
| | - Amir Saeed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of Medical Science & Technology, Khartoum, Sudan
| |
Collapse
|
2
|
Gorantla K, Krishnan A, Waheed SO, Varghese A, DiCastri I, LaRouche C, Paik M, Fields GB, Karabencheva-Christova TG. Novel Insights into the Catalytic Mechanism of Collagenolysis by Zn(II)-Dependent Matrix Metalloproteinase-1. Biochemistry 2024; 63:1925-1940. [PMID: 38963231 PMCID: PMC11309001 DOI: 10.1021/acs.biochem.4c00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
Collagen hydrolysis, catalyzed by Zn(II)-dependent matrix metalloproteinases (MMPs), is a critical physiological process. Despite previous computational investigations into the catalytic mechanisms of MMP-mediated collagenolysis, a significant knowledge gap in understanding remains regarding the influence of conformational sampling and entropic contributions at physiological temperature on enzymatic collagenolysis. In our comprehensive multilevel computational study, employing quantum mechanics/molecular mechanics (QM/MM) metadynamics (MetD) simulations, we aimed to bridge this gap and provide valuable insights into the catalytic mechanism of MMP-1. Specifically, we compared the full enzyme-substrate complex in solution, clusters in solution, and gas-phase to elucidate insights into MMP-1-catalyzed collagenolysis. Our findings reveal significant differences in the catalytic mechanism when considering thermal effects and the dynamic evolution of the system, contrasting with conventional static potential energy surface QM/MM reaction path studies. Notably, we observed a significant stabilization of the critical tetrahedral intermediate, attributed to contributions from conformational flexibility and entropy. Moreover, we found that protonation of the scissile bond nitrogen occurs via proton transfer from a Zn(II)-coordinated hydroxide rather than from a solvent water molecule. Following C-N bond cleavage, the C-terminus remains coordinated to the catalytic Zn(II), while the N-terminus forms a hydrogen bond with a solvent water molecule. Subsequently, the release of the C-terminus is facilitated by the coordination of a water molecule. Our study underscores the pivotal role of protein conformational dynamics at physiological temperature in stabilizing the transition state of the rate-limiting step and key intermediates, compared to the corresponding reaction in solution. These fundamental insights into the mechanism of collagen degradation provide valuable guidance for the development of MMP-1-specific inhibitors.
Collapse
Affiliation(s)
- Koteswara
Rao Gorantla
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Anandhu Krishnan
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Sodiq O. Waheed
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Ann Varghese
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Isabella DiCastri
- Department
of Chemical Engineering, Michigan Technological
University, Houghton, Michigan 49931, United States
| | - Ciara LaRouche
- Department
of Chemical Engineering, Michigan Technological
University, Houghton, Michigan 49931, United States
| | - Meredith Paik
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Gregg B. Fields
- Department
of Chemistry and Biochemistry and I-HEALTH, Florida Atlantic University, Jupiter, Florida 33458, United States
| | | |
Collapse
|
3
|
Mahendran R, Selvaraj SP, Dhanapal AR, Sarasa SB, Mathias BM, Thankappan B, Femil Selta DR, Naveen P, Poorani R, Sundhar N, Pillai MM, Selvakumar R, Huang CY, Eswaran R, Angayarkanni J. Tetrahydrobiopterin from cyanide-degrading bacterium Bacillus pumilus strain SVD06 induces apoptosis in human lung adenocarcinoma cell (A549). Biotechnol Appl Biochem 2023; 70:2052-2068. [PMID: 37731306 DOI: 10.1002/bab.2509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023]
Abstract
Tetrahydrobiopterin (BH4) is an essential biological cofactor and a derivative of pterin which is considered potent anticancer agents. In continuation of our previous study on the identification of BH4 from cyanide-degrading Bacillus pumilus, the present study focuses on evaluating the anticancer properties of BH4 on A549, a human lung adenocarcinoma. Anticancer activity analysis shows that BH4 inhibited A549 cell growth after 24 h of incubation with 0.02 mg/mL. In acridine orange/ethidium bromide staining, BH4-treated A549 cells showed apoptotic morphology. BH4 treatment caused cell cycle arrest at G0/G1 phase compared to control cells. BH4 augmented p53 expression in alveolar cancer cells by downregulating MDM2 levels. There was downregulation of casp-3 and upregulation of iNOS gene in BH4-treated A549 cells. Further, docking studies indicated that BH4 had significant interactions with the above proteins affirming the apoptosis mechanism. Thus, BH4 could be considered a potential anticancer drug.
Collapse
Affiliation(s)
- Ramasamy Mahendran
- Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Sanjay Prasad Selvaraj
- Molecular and Biological Agricultural Science Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Anand Raj Dhanapal
- Institute of Forest Genetics and Tree Breeding (IFGTB), Forest Campus, Coimbatore, Tamil Nadu, India
| | - Sabna Bhaskaran Sarasa
- Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Beutline Malgija Mathias
- Computational Science Laboratory, MCC-MRF Innovation Park, Madras Christian College, Chennai, Tamil Nadu, India
| | - Bency Thankappan
- Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Daniel Raja Femil Selta
- Department of Biochemistry and Cancer Research Center, FASCM, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - Palanivel Naveen
- Department of Chemistry, Sona College of Arts and Science, Salem, Tamil Nadu, India
| | - Rhenghachar Poorani
- Gayatri Vidya parishad Institute of Health Care and Medical Technology, Visakhapatnam, India
| | - Navaneethan Sundhar
- Graduate Institute of Biomedical Sciences, School of Medicine, China Medical University, Taichung, Taiwan
| | - Mamatha M Pillai
- Tissue Engineering Laboratory, PSG Institute of Advanced Studies, Coimbatore, Tamil Nadu, India
| | - Rajendran Selvakumar
- Tissue Engineering Laboratory, PSG Institute of Advanced Studies, Coimbatore, Tamil Nadu, India
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- PhD Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Raju Eswaran
- Department of Zoology, The Madura College, Madurai, Tamil Nadu, India
| | - Jayaraman Angayarkanni
- Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
4
|
R S, Mahalakshmi S, Vetrivelan V, Irfan A, Muthu S. Absorption wavelength (TD-DFT) and adsorption of metal chalcogen clusters with methyl nicotinate: Structural, electronic, IRI, SERS, pharmacological and antiviral studies (HIV and omicron). Heliyon 2023; 9:e16066. [PMID: 37234664 PMCID: PMC10208831 DOI: 10.1016/j.heliyon.2023.e16066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
The DFT B3LYP-LAND2DZ technique is used to examine interactions of Methyl nicotinate with copper selenide and zinc selenide clusters. The existence of reactive sites is determined using ESP maps and Fukui data. The energy variations between HOMO and LUMO are utilised to calculate various energy parameters. The Atoms in Molecules and ELF (Electron Localisation Function) maps are employed to investigate the topology of the molecule. The Interaction Region Indicator is used to determine the existence of non-covalent zones in the molecule. The UV-Vis spectrum using the TD-DFT method and DOS graphs are used to obtain the theoretical determination of electronic transition and properties. Structural analysis of the compound is obtained using theoretical IR spectra. To explore the adsorption of copper selenide and zinc selenide clusters on the Methyl nicotinate, the adsorption energy and theoretical SERS spectra are employed. Furthermore, pharmacological investigations are carried out to confirm the drug's non-toxicity. The compound's antiviral efficacy against HIV and Omicron is demonstrated via protein-ligand docking.
Collapse
Affiliation(s)
- Sravanthi R
- Department of Physics, Ethiraj College for Women, Chennai, 600008, Tamil Nadu, India
- University of Madras, Chennai, 600005, Tamil Nadu, India
| | - S. Mahalakshmi
- Department of Physics, Ethiraj College for Women, Chennai, 600008, Tamil Nadu, India
| | - V. Vetrivelan
- Department of Physics, Government College of Engineering, Srirangam, Trichy 620012, Tamil Nadu, India
| | - Ahmad Irfan
- Department of Chemistry, College of Science, King Khalid University, P. O. Box 9004, Abha, 61413, Saudi Arabia
| | - S. Muthu
- Department of Physics, Arignar Anna Govt.Arts College, Cheyyar, 604407, Tamil Nadu, India
| |
Collapse
|
5
|
Brickel S, Demkiv AO, Crean RM, Pinto GP, Kamerlin SCL. Q-RepEx: A Python pipeline to increase the sampling of empirical valence bond simulations. J Mol Graph Model 2023; 119:108402. [PMID: 36610324 DOI: 10.1016/j.jmgm.2022.108402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/17/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
The exploration of chemical systems occurs on complex energy landscapes. Comprehensively sampling rugged energy landscapes with many local minima is a common problem for molecular dynamics simulations. These multiple local minima trap the dynamic system, preventing efficient sampling. This is a particular challenge for large biochemical systems with many degrees of freedom. Replica exchange molecular dynamics (REMD) is an approach that accelerates the exploration of the conformational space of a system, and thus can be used to enhance the sampling of complex biomolecular processes. In parallel, the empirical valence bond (EVB) approach is a powerful approach for modeling chemical reactivity in biomolecular systems. Here, we present an open-source Python-based tool that interfaces with the Q simulation package, and increases the sampling efficiency of the EVB free energy perturbation/umbrella sampling approach by means of REMD. This approach, Q-RepEx, both decreases the computational cost of the associated REMD-EVB simulations, and opens the door to more efficient studies of biochemical reactivity in systems with significant conformational fluctuations along the chemical reaction coordinate.
Collapse
Affiliation(s)
- Sebastian Brickel
- Department of Chemistry - BMC, Uppsala University, BMC Box 576, S-751 23, Uppsala, Sweden
| | - Andrey O Demkiv
- Department of Chemistry - BMC, Uppsala University, BMC Box 576, S-751 23, Uppsala, Sweden
| | - Rory M Crean
- Department of Chemistry - BMC, Uppsala University, BMC Box 576, S-751 23, Uppsala, Sweden
| | - Gaspar P Pinto
- Department of Chemistry - BMC, Uppsala University, BMC Box 576, S-751 23, Uppsala, Sweden
| | - Shina Caroline Lynn Kamerlin
- Department of Chemistry - BMC, Uppsala University, BMC Box 576, S-751 23, Uppsala, Sweden; School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA, 30332-0400, USA.
| |
Collapse
|
6
|
Toledo MV, Briand LE, Ferreira ML. A Simple Molecular Model to Study the Substrate Diffusion into the Active Site of a Lipase-Catalyzed Esterification of Ibuprofen and Ketoprofen with Glycerol. Top Catal 2022. [DOI: 10.1007/s11244-022-01636-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Yang C, Li P, Wang P, Zhu BT. Mechanism of reactivation of the peroxidase catalytic activity of human cyclooxygenases by reducing cosubstrate quercetin. J Mol Graph Model 2021; 107:107941. [PMID: 34091174 DOI: 10.1016/j.jmgm.2021.107941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/22/2021] [Accepted: 05/11/2021] [Indexed: 11/19/2022]
Abstract
Our earlier studies show that the peroxidase activity of cyclooxygenase 1 and 2 (COX-1 and COX-2) can be reactivated in vitro and in vivo by the presence of certain naturally-occurring flavonoids such as quercetin and myricetin, which serve as reducing cosubstrates. These compounds can activate COX at nanomolar concentrations. In the present study, quercetin is used as a representative model compound to investigate the chemical mechanism by which the peroxidase activity of human COX-1 and COX-2 is reactivated after each catalytic cycle. Molecular docking and quantum mechanics calculations are carried out to probe the interactions of quercetin with the peroxidase sites of COX-1/2 and the reactivation mechanism. It is found that some of the partially-ionized states of quercetin can bind tightly and closely inside the peroxidase active sites of the COX enzymes and directly interact with heme Fe ion. While quercetin contains several phenolic hydroxyl groups, it is found that only the C-3'-OH group can effectively donate an electron for the reduction of heme because it not only can bind closely and tightly inside the peroxidase sites of COX-1/2, but it can also facilely donate an electron to heme Fe ion. This investigation provides a mechanistic explanation for the chemical process by which quercetin reactivates COX-1/2 peroxidases. This knowledge would aid in the rational design of drugs that can selectively target the peroxidase sites of COX-1/2 either as activators or inhibitors.
Collapse
Affiliation(s)
- Chengxi Yang
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Peng Li
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Pan Wang
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China; Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Bao Ting Zhu
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China; Shenzhen Bay Laboratory, Shenzhen 518055, China.
| |
Collapse
|
8
|
Elsässer B, Goettig P. Mechanisms of Proteolytic Enzymes and Their Inhibition in QM/MM Studies. Int J Mol Sci 2021; 22:3232. [PMID: 33810118 PMCID: PMC8004986 DOI: 10.3390/ijms22063232] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022] Open
Abstract
Experimental evidence for enzymatic mechanisms is often scarce, and in many cases inadvertently biased by the employed methods. Thus, apparently contradictory model mechanisms can result in decade long discussions about the correct interpretation of data and the true theory behind it. However, often such opposing views turn out to be special cases of a more comprehensive and superior concept. Molecular dynamics (MD) and the more advanced molecular mechanical and quantum mechanical approach (QM/MM) provide a relatively consistent framework to treat enzymatic mechanisms, in particular, the activity of proteolytic enzymes. In line with this, computational chemistry based on experimental structures came up with studies on all major protease classes in recent years; examples of aspartic, metallo-, cysteine, serine, and threonine protease mechanisms are well founded on corresponding standards. In addition, experimental evidence from enzyme kinetics, structural research, and various other methods supports the described calculated mechanisms. One step beyond is the application of this information to the design of new and powerful inhibitors of disease-related enzymes, such as the HIV protease. In this overview, a few examples demonstrate the high potential of the QM/MM approach for sophisticated pharmaceutical compound design and supporting functions in the analysis of biomolecular structures.
Collapse
Affiliation(s)
| | - Peter Goettig
- Structural Biology Group, Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria;
| |
Collapse
|
9
|
Lodola A, Callegari D, Scalvini L, Rivara S, Mor M. Design and SAR Analysis of Covalent Inhibitors Driven by Hybrid QM/MM Simulations. Methods Mol Biol 2020; 2114:307-337. [PMID: 32016901 DOI: 10.1007/978-1-0716-0282-9_19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Quantum mechanics/molecular mechanics (QM/MM) hybrid technique is emerging as a reliable computational method to investigate and characterize chemical reactions occurring in enzymes. From a drug discovery perspective, a thorough understanding of enzyme catalysis appears pivotal to assist the design of inhibitors able to covalently bind one of the residues belonging to the enzyme catalytic machinery. Thanks to the current advances in computer power, and the availability of more efficient algorithms for QM-based simulations, the use of QM/MM methodology is becoming a viable option in the field of covalent inhibitor design. In the present review, we summarized our experience in the field of QM/MM simulations applied to drug design problems which involved the optimization of agents working on two well-known drug targets, namely fatty acid amide hydrolase (FAAH) and epidermal growth factor receptor (EGFR). In this context, QM/MM simulations gave valuable information in terms of geometry (i.e., of transition states and metastable intermediates) and reaction energetics that allowed to correctly predict inhibitor binding orientation and substituent effect on enzyme inhibition. What is more, enzyme reaction modelling with QM/MM provided insights that were translated into the synthesis of new covalent inhibitor featured by a unique combination of intrinsic reactivity, on-target activity, and selectivity.
Collapse
Affiliation(s)
- Alessio Lodola
- Drug Design and Discovery Group, Department of Food and Drug, University of Parma, Parma, Italy.
| | - Donatella Callegari
- Drug Design and Discovery Group, Department of Food and Drug, University of Parma, Parma, Italy
| | - Laura Scalvini
- Drug Design and Discovery Group, Department of Food and Drug, University of Parma, Parma, Italy
| | - Silvia Rivara
- Drug Design and Discovery Group, Department of Food and Drug, University of Parma, Parma, Italy
| | - Marco Mor
- Drug Design and Discovery Group, Department of Food and Drug, University of Parma, Parma, Italy
| |
Collapse
|