1
|
Zou P, Liu J, Li P, Luan Q. Antifungal Activity, Synergism with Fluconazole or Amphotericin B and Potential Mechanism of Direct Current against Candida albicans Biofilms and Persisters. Antibiotics (Basel) 2024; 13:521. [PMID: 38927187 PMCID: PMC11200915 DOI: 10.3390/antibiotics13060521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Candida albicans, as a notorious fungal pathogen, is associated with high morbidity and mortality worldwide due to its ability to form biofilms and persisters that can withstand currently available antifungals. Direct current (DC) has demonstrated a promising antimicrobial effect and synergistic effect with antimicrobials against various infections. Here, we first found DC exerted a killing effect on C. albicans planktonic and biofilm cells. Moreover, DC showed a synergistic effect with fluconazole (FLC) and amphotericin B (AMB). Notably, near-to-complete eradication of AMB-tolerant C. albicans biofilm persisters was achieved upon DC treatment. Next, the mechanism of action of DC was explored through mapping the genes and proteomic profiles of DC-treated C. albicans. The multi-omics analysis, quantitative real-time PCR and assay of reactive oxygen species (ROS) demonstrated DC exerted an antifungal effect on C. albicans by increasing cellular oxidative stress. As revealed by multiple analyses (e.g., protein assay based on absorbance at 280 nm and rhodamine 6G assay), DC was able to enhance membrane permeability, inhibit drug efflux and increase cellular FLC/AMB concentration of C. albicans, thereby mediating its synergism with the antifungals. Furthermore, DC inhibited superoxide dismutase 2 (SOD2) expression and manganese-containing SOD (Mn SOD) activity, leading to ROS production and enhanced killing of C. albicans biofilm persisters. The current findings demonstrate that the adjunctive use of DC in combination with antifungals is a promising strategy for effective control of C. albicans infections and management of antifungal resistance/tolerance in Candida biofilms.
Collapse
Affiliation(s)
| | | | - Peng Li
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing 100081, China; (P.Z.); (J.L.)
| | - Qingxian Luan
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing 100081, China; (P.Z.); (J.L.)
| |
Collapse
|
2
|
Lee J, Song H, Kim K. Inhibition of Candida albicans Biofilm Formation and Attenuation of Its Virulence by Liriope muscari. Antibiotics (Basel) 2024; 13:434. [PMID: 38786162 PMCID: PMC11117302 DOI: 10.3390/antibiotics13050434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
(1) Background: Although Candida albicans accounts for the majority of fungal infections, therapeutic options are limited and require alternative antifungal agents with new targets; (2) Methods: A biofilm formation assay with RPMI1640 medium was performed with Liriope muscari extract. A combination antifungal assay, dimorphic transition assay, and adhesion assay were performed under the biofilm formation condition to determine the anti-biofilm formation effect. qRT-PCR analysis was accomplished to confirm changes in gene expression; (3) Results: L. muscari extract significantly reduces biofilm formation by 51.65% at 1.56 μg/mL use and therefore increases susceptibility to miconazole. L. muscari extract also inhibited the dimorphic transition of Candida; nearly 50% of the transition was inhibited when 1.56 μg/mL of the extract was treated. The extract of L. muscari inhibited the expression of genes related to hyphal development and extracellular matrix of 34.4% and 36.0%, respectively, as well as genes within the Ras1-cAMP-PKA, Cph2-Tec1, and MAP kinase signaling pathways of 25.58%, 7.1% and 15.8%, respectively, at 1.56 μg/mL of L. muscari extract treatment; (4) Conclusions: L. muscari extract significantly reduced Candida biofilm formation, which lead to induced antifungal susceptibility to miconazole. It suggests that L. muscari extract is a promising anti-biofilm candidate of Candida albicans since the biofilm formation of Candida albicans is an excellent target for candidiasis regulation.
Collapse
Affiliation(s)
- Jeonghoon Lee
- Department of Medical Science of Meridian, College of Korean Medicine, Graduate School, Kyung Hee University, Kyungheedae-ro 6-gil, Dongdaemun-gu, Seoul 02447, Republic of Korea;
| | - Hyunchan Song
- Graduate School of Biotechnology, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si 17104, Republic of Korea;
| | - Kiyoung Kim
- Graduate School of Biotechnology, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si 17104, Republic of Korea;
| |
Collapse
|
3
|
Li Z, Shui Y, Wang H, Li S, Deng B, Zhang W, Gao S, Zhao L. In Vitro and In Vivo Anti-Candida albicans Activity of a Scorpion-Derived Peptide. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10233-3. [PMID: 38372937 DOI: 10.1007/s12602-024-10233-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2024] [Indexed: 02/20/2024]
Abstract
The increasing infection and drug resistance frequency has encouraged the exploration of new and effective anti-Candida albicans agents. In this study, CT-K3K7, a scorpion antimicrobial peptide derivative, effectively inhibit the growth of C. albicans. CT-K3K7 killed C. albicans cells in a dose-dependent manner, mainly by damaging the plasma membrane. CT-K3K7 could also disrupt the nucleus and interact with nucleic acid. Moreover, CT-K3K7 induced C. albicans cells necrosis via a reactive oxygen species (ROS)-related pathway. Furthermore, CT-K3K7 inhibited the hyphal and biofilm formation of C. albicans. In the mouse skin subcutaneous infection model, CT-K3K7 significantly prevented skin abscess formation and reduced the number of C. albicans cells recovered from the infection area. Taken together, CT-K3K7 has the potential to be a therapeutic for C. albicans skin infections.
Collapse
Affiliation(s)
- Zhongjie Li
- Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710049, China.
- Microbial Pathogen and Anti-Infection Research Group, School of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471000, China.
- Henan Provincial Key Laboratory of Microbiota and Esophageal Cancer Prevention and Control, Henan University of Science and Technology, Luoyang, 471000, China.
| | - Yingbin Shui
- Microbial Pathogen and Anti-Infection Research Group, School of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471000, China
| | - Huayi Wang
- Microbial Pathogen and Anti-Infection Research Group, School of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471000, China
| | - Shasha Li
- Microbial Pathogen and Anti-Infection Research Group, School of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471000, China
| | - Bo Deng
- Microbial Pathogen and Anti-Infection Research Group, School of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471000, China
| | - Wenlu Zhang
- Microbial Pathogen and Anti-Infection Research Group, School of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471000, China
| | - Shegan Gao
- Henan Provincial Key Laboratory of Microbiota and Esophageal Cancer Prevention and Control, Henan University of Science and Technology, Luoyang, 471000, China.
- The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471000, China.
| | - Lingyu Zhao
- Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
4
|
Xiong J, Wang L, Feng Z, Hang S, Yu J, Feng Y, Lu H, Jiang Y. Halofantrine Hydrochloride Acts as an Antioxidant Ability Inhibitor That Enhances Oxidative Stress Damage to Candida albicans. Antioxidants (Basel) 2024; 13:223. [PMID: 38397821 PMCID: PMC10886025 DOI: 10.3390/antiox13020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/25/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Candida albicans, a prominent opportunistic pathogenic fungus in the human population, possesses the capacity to induce life-threatening invasive candidiasis in individuals with compromised immune systems despite the existence of antifungal medications. When faced with macrophages or neutrophils, C. albicans demonstrates its capability to endure oxidative stress through the utilization of antioxidant enzymes. Therefore, the enhancement of oxidative stress in innate immune cells against C. albicans presents a promising therapeutic approach for the treatment of invasive candidiasis. In this study, we conducted a comprehensive analysis of a library of drugs approved by the Food and Drug Administration (FDA). We discovered that halofantrine hydrochloride (HAL) can augment the antifungal properties of oxidative damage agents (plumbagin, menadione, and H2O2) by suppressing the response of C. albicans to reactive oxygen species (ROS). Furthermore, our investigation revealed that the inhibitory mechanism of HAL on the oxidative response is dependent on Cap1. In addition, the antifungal activity of HAL has been observed in the Galleria mellonella infection model. These findings provide evidence that targeting the oxidative stress response of C. albicans and augmenting the fungicidal capacity of oxidative damage agents hold promise as effective antifungal strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| |
Collapse
|
5
|
Vishwakarma M, Haider T, Soni V. Update on fungal lipid biosynthesis inhibitors as antifungal agents. Microbiol Res 2024; 278:127517. [PMID: 37863019 DOI: 10.1016/j.micres.2023.127517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023]
Abstract
Fungal diseases today represent a world-wide problem. Poor hygiene and decreased immunity are the main reasons behind the manifestation of this disease. After COVID-19, an increase in the rate of fungal infection has been observed in different countries. Different classes of antifungal agents, such as polyenes, azoles, echinocandins, and anti-metabolites, as well as their combinations, are currently employed to treat fungal diseases; these drugs are effective but can cause some side effects and toxicities. Therefore, the identification and development of newer antifungal agents is a current need. The fungal cell comprises many lipids, such as ergosterol, phospholipids, and sphingolipids. Ergosterol is a sterol lipid that is only found in fungal cells. Various pathways synthesize all these lipids, and the activities of multiple enzymes govern these pathways. Inhibiting these enzymes will ultimately impede the lipid synthesis pathway, and this phenomenon could be a potential antifungal therapy. This review will discuss various lipid synthesis pathways and multiple antifungal agents identified as having fungal lipid synthesis inhibition activity. This review will identify novel compounds that can inhibit fungal lipid synthesis, permitting researchers to direct further deep pharmacological investigation and help develop drug delivery systems for such compounds.
Collapse
Affiliation(s)
- Monika Vishwakarma
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, M.P., India
| | - Tanweer Haider
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, M.P., India; Amity Institute of Pharmacy, Amity University, Gwalior, M.P., India
| | - Vandana Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, M.P., India.
| |
Collapse
|
6
|
Huang M, Yang L, Zhou L, Sun C, Zhao W, Peng J, Jiao Z, Tian C, Guo G. Identification and functional characterization of ORF19.5274, a novel gene involved in both azoles susceptibility and hypha development in Candida albicans. Front Microbiol 2022; 13:990318. [PMID: 36262330 PMCID: PMC9575988 DOI: 10.3389/fmicb.2022.990318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Azole resistance is becoming increasingly serious due to the frequent recurrence of fungal infections and the need for long-term clinical prevention. In our previous study, we discovered ORF19.5274 with an unknown function by TMT™ quantitative proteomics technology after fluconazole (FLC) treatment of Candida albicans. In this study, we created the target gene deletion strain using CRISPR-Cas9 editing technology to see if ORF19.5274 regulates azole sensitivity. The data showed that ORF19.5274 was involved in hyphal development and susceptibility to antifungal azoles. Deleting this gene resulted in defective hyphal growth in solid medium, while only a weak lag in the initiation of hyphal development and restoring hyphal growth during the hyphal maintenance phase under liquid conditions. Moreover, intracellular reactive oxygen species (ROS) assay and propidium iodide staining assays showed increased endogenous ROS levels and membrane permeability, but decreased metabolic activity of biofilm in orf19.5274Δ/Δ after treatment with FLC in comparison with either SC5314 or orf19.5274Δ/Δ::ORF19.5274 strains. More importantly, orf19.5274Δ/Δ significantly enhanced the FLC efficacy against C. albicans in infected Galleria mellonella larvae. The above characteristics were fully or partially restored in the complemented strain indicating that the changes caused by ORF19.5274 deletion were specific. In summary, the ORF19.5274 gene is required for hyphal development of C. albicans, and is correlated with the response to antifungal azoles in vitro and in vivo. The identification of ORF19.5275 is promising to expand the potential candidate targets for azoles.
Collapse
Affiliation(s)
- Mingjiao Huang
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Longbing Yang
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Luoxiong Zhou
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control (Guizhou Medical University), Ministry of Education, Guiyang, China
| | - Chaoqin Sun
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Center of Laboratory Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wenjing Zhao
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Jian Peng
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control (Guizhou Medical University), Ministry of Education, Guiyang, China
| | - Zhenlong Jiao
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
| | - Chunren Tian
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Guo Guo
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control (Guizhou Medical University), Ministry of Education, Guiyang, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
- *Correspondence: Guo Guo,
| |
Collapse
|
7
|
Inhibitory Effects and Mechanism of Action of Elsinochrome A on Candida albicans and Its Biofilm. J Fungi (Basel) 2022; 8:jof8080841. [PMID: 36012829 PMCID: PMC9409654 DOI: 10.3390/jof8080841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Biofilm-associated Candida albicans infections, the leading cause of invasive candidiasis, can cause high mortality rates in immunocompromised patients. Photodynamic antimicrobial chemotherapy (PACT) is a promising approach for controlling infections caused by biofilm-associated C. albicans. This study shows the effect of Elsinochrome A (EA) against different stages of C. albicans biofilms in vitro by XTT reduction assay and crystal violet staining. The mechanism of action of EA on C. albicans biofilm was analyzed with flow cytometry, confocal laser microscopy, and the Real-Time Quantitative Reverse Transcription PCR (qRT-PCR). EA-mediated PACT significantly reduced the viability of C. albicans, with an inhibition rate on biofilm of 89.38% under a concentration of 32 μg/mL EA. We found that EA could not only inhibit the adhesion of C. albicans in the early stage of biofilm formation, but that it also had good effects on pre-formed mature biofilms with a clearance rate of 35.16%. It was observed that EA-mediated PACT promotes the production of a large amount of reactive oxygen species (ROS) in C. albicans and down-regulates the intracellular expression of oxidative-stress-related genes, which further disrupted the permeability of cell membranes, leading to mitochondrial and nuclear damage. These results indicate that EA has good photodynamic antagonizing activity against the C. albicans biofilm, and potential clinical value.
Collapse
|
8
|
Bhardwaj P, Biswas GP, Mahata N, Ghanta S, Bhunia B. Exploration of binding mechanism of triclosan towards cancer markers using molecular docking and molecular dynamics. CHEMOSPHERE 2022; 293:133550. [PMID: 34999105 DOI: 10.1016/j.chemosphere.2022.133550] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/26/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
The molecule 5-chloro-2-(2,4-dichlorophenoxy) phenol is well-known as Triclosan (TCS), which is also a potential endocrine disrupting synthetic chemical. TCS exposure has been connected to the control of the human enoyl-acyl carrier protein-reductase (hER), which has been linked to a range of life threatening diseases. However, other than hER, the new protein targets for TCS that are responsible for a variety of cancers are yet unclear. The goal of this work is to investigate into the protein binding patterns of TCS and proteins from various cancer signaling pathways. Discovery Studio 4.1 was used to perform molecular docking and molecular dynamics (MD) on the protein-triclosan complex. The proteins were first screened using CHARMM-based docking with a CDOCKER energy greater than -21.40 kcal/mol. The CDOCKER energies of Fas-associated death domain (FADD), Receptor-interacting protein 1 (RIP1), F-κB-inducing kinase (NIK), c-Jun N-terminal kinase (JNK), Apoptosis signal-regulating kinase 1 (ASK1), B-cell lymphoma 2 (Bcl-2), Apoptosis-inducing factor (AIF), α-tubulin, and Actin were -20.68 kcal/mol, -26.88 kcal/mol, -23.43 kcal/mol, -22.21 kcal/mol, -20.40 kcal/mol, -21.10 kcal/mol, -20.98 kcal/mol, -24.67 kcal/mol, and -23.09 kcal/mol respectively. MD was performed on the screened proteins by standard dynamics cascade tool using CHARMM Force field. The MD results were accessed using the energy-time graph, root-mean-square deviation (RMSD), and root mean square fluctuations (RMSF). The 100 conformers of α-tubulin, NIK, FADD, and RIP1 were found to have a trend of increasing RMSD, whereas Bcl-2, ASK1, AIF, Actin, and JNK proteins had lower RMSD values. In compared to FADD, AIF, and JNK, the RMSF variations of the Bcl-2, ASK1, α-tubulin, Actin, NIK, and RIP1 residues were shown to be high. Similar patterns were seen in the energy variations, which range from 1000 kcal/mol to 2000 kcal/mol. RIP1 and Bcl-2 showed more variation in the sidechain RMSF in comparison to FADD, ASK1, AIF, Actin, α-tubulin, NIK and JNK. Thus, it can be postulated that AIF and JNK proteins of apoptosis signaling pathway are pivotal in the TCS mediated reactions.
Collapse
Affiliation(s)
- Prashant Bhardwaj
- Department of Computer Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India; Department of Computer Science and Engineering, National Institute of Technology, Agartala, 799046, India.
| | - G P Biswas
- Department of Computer Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India.
| | - Nibedita Mahata
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, 713209, India.
| | - Susanta Ghanta
- Department of Chemistry, National Institute of Technology, Agartala, 799046, India.
| | - Biswanath Bhunia
- Department of Bio Engineering, National Institute of Technology, Agartala, 799046, India.
| |
Collapse
|