Fantini J, Azzaz F, Aulas A, Chahinian H, Yahi N. Preclinical assessment of a ganglioside-targeted therapy for Parkinson's disease with the first-in-class adaptive peptide AmyP53.
Sci Rep 2025;
15:9144. [PMID:
40097723 PMCID:
PMC11914484 DOI:
10.1038/s41598-025-94148-1]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/12/2025] [Indexed: 03/19/2025] Open
Abstract
We propose a new concept for the treatment of Parkinson's disease (PD), which considers that its root cause, α-synuclein, is an intrinsically disordered protein (IDP) difficult to target by classic approaches. Upon binding to lipid raft gangliosides, α-synuclein shifts from random coil to α-helix, forming Ca2+-permeable oligomeric pores triggering a neurotoxicity cascade. We used the α-synuclein-ganglioside interaction as guideline to design a therapeutic peptide (AmyP53) that combines the respective flexible ganglioside-binding domains of α-synuclein and Alzheimer's β-amyloid protein. AmyP53 is an adaptive peptide, the first representant of a new therapeutic class. It acts as a competitive inhibitor of α-synuclein oligomer formation in brain cell membranes and prevents subsequent downstream synaptotoxicity, including the loss of dopaminergic neurons in an animal α-synuclein injection model of PD. It is active against both wild-type and mutant forms of α-synuclein. AmyP53 is administered intranasally without side effects. This new concept "target the target (gangliosides), not the arrow (IDP)" is distinct from classic α-synuclein centric approaches that did not cure PD so far.
Collapse