1
|
Chen J, Huang Q, Li J, Yao Y, Sun W, Zhang Z, Qi H, Chen Z, Liu J, Zhao D, Mi J, Li X. Panax ginseng against myocardial ischemia/reperfusion injury: A review of preclinical evidence and potential mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115715. [PMID: 36108895 DOI: 10.1016/j.jep.2022.115715] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax ginseng C. A. Meyer (P. ginseng) is effective in the prevention and treatment of myocardial ischemia-reperfusion (I/R) injury. The mechanism by which P. ginseng exerts cardioprotective effects is complex. P. ginseng contains many pharmacologically active ingredients, such as molecular glycosides, polyphenols, and polysaccharides. P. ginseng and each of its active components can potentially act against myocardial I/R injury. Myocardial I/R was originally a treatment for myocardial ischemia, but it also induced irreversible damage, including oxygen-containing free radicals, calcium overload, energy metabolism disorder, mitochondrial dysfunction, inflammation, microvascular injury, autophagy, and apoptosis. AIM OF THE STUDY This study aimed to clarify the protective effects of P. ginseng and its active ingredients against myocardial I/R injury, so as to provide experimental evidence and new insights for the research and application of P. ginseng in the field of myocardial I/R injury. MATERIALS AND METHODS This review was based on a search of PubMed, NCBI, Embase, and Web of Science databases from their inception to February 21, 2022, using terms such as "ginseng," "ginsenosides," and "myocardial reperfusion injury." In this review, we first summarized the active ingredients of P. ginseng, including ginsenosides, ginseng polysaccharides, and phytosterols, as well as the pathophysiological mechanisms of myocardial I/R injury. Importantly, preclinical models with myocardial I/R injury and potential mechanisms of these active ingredients of P. ginseng for the prevention and treatment of myocardial disorders were generally summarized. RESULTS P. ginseng and its active components can regulate oxidative stress related proteins, inflammatory cytokines, and apoptosis factors, while protecting the myocardium and preventing myocardial I/R injury. Therefore, P. ginseng can play a role in the prevention and treatment of myocardial I/R injury. CONCLUSIONS P. ginseng has a certain curative effect on myocardial I/R injury. It can prevent and treat myocardial I/R injury in several ways. When ginseng exerts its effects, should be based on the theory of traditional Chinese medicine and with the help of modern medicine; the clinical efficacy of P. ginseng in preventing and treating myocardial I/R injury can be improved.
Collapse
Affiliation(s)
- Jinjin Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Qingxia Huang
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China; Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Jing Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Yao Yao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Weichen Sun
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Zepeng Zhang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Hongyu Qi
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Zhaoqiang Chen
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Jiaqi Liu
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Daqing Zhao
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Jia Mi
- Department of Endocrinology, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China.
| | - Xiangyan Li
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China.
| |
Collapse
|
2
|
Choi HS, Mathew AP, Uthaman S, Vasukutty A, Kim IJ, Suh SH, Kim CS, Ma SK, Graham SA, Kim SW, Park IK, Bae EH. Inflammation-sensing catalase-mimicking nanozymes alleviate acute kidney injury via reversing local oxidative stress. J Nanobiotechnology 2022; 20:205. [PMID: 35477452 PMCID: PMC9044883 DOI: 10.1186/s12951-022-01410-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/03/2022] [Indexed: 11/10/2022] Open
Abstract
Background The reactive oxygen species (ROS) and inflammation, a critical contributor to tissue damage, is well-known to be associated with various disease. The kidney is susceptible to hypoxia and vulnerable to ROS. Thus, the vicious cycle between oxidative stress and renal hypoxia critically contributes to the progression of chronic kidney disease and finally, end-stage renal disease. Thus, delivering therapeutic agents to the ROS-rich inflammation site and releasing the therapeutic agents is a feasible solution. Results We developed a longer-circulating, inflammation-sensing, ROS-scavenging versatile nanoplatform by stably loading catalase-mimicking 1-dodecanethiol stabilized Mn3O4 (dMn3O4) nanoparticles inside ROS-sensitive nanomicelles (PTC), resulting in an ROS-sensitive nanozyme (PTC-M). Hydrophobic dMn3O4 nanoparticles were loaded inside PTC micelles to prevent premature release during circulation and act as a therapeutic agent by ROS-responsive release of loaded dMn3O4 once it reached the inflammation site. Conclusions The findings of our study demonstrated the successful attenuation of inflammation and apoptosis in the IRI mice kidneys, suggesting that PTC-M nanozyme could possess promising potential in AKI therapy. This study paves the way for high-performance ROS depletion in treating various inflammation-related diseases. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01410-z.
Collapse
Affiliation(s)
- Hong Sang Choi
- Departments of Internal Medicine, Chonnam National University Medical School, 160, Baekseo‑ro, Dong‑gu, Gwangju, 61469, Republic of Korea.,Departments of Internal Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Ansuja Pulickal Mathew
- Department of Biomedical Sciences, BK21 PLUS Center for Creative Biomedical Scientists, Chonnam National University Medical School, 160, Baekseo‑ro, Dong‑gu, Gwangju, 61469, Republic of Korea.,BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun-gun, Jeollanam-do, Republic of Korea
| | - Saji Uthaman
- Department of Biomedical Sciences, BK21 PLUS Center for Creative Biomedical Scientists, Chonnam National University Medical School, 160, Baekseo‑ro, Dong‑gu, Gwangju, 61469, Republic of Korea.,BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun-gun, Jeollanam-do, Republic of Korea
| | - Arathy Vasukutty
- Department of Biomedical Sciences, BK21 PLUS Center for Creative Biomedical Scientists, Chonnam National University Medical School, 160, Baekseo‑ro, Dong‑gu, Gwangju, 61469, Republic of Korea.,BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun-gun, Jeollanam-do, Republic of Korea
| | - In Jin Kim
- Departments of Internal Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Sang Heon Suh
- Departments of Internal Medicine, Chonnam National University Medical School, 160, Baekseo‑ro, Dong‑gu, Gwangju, 61469, Republic of Korea.,Departments of Internal Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Chang Seong Kim
- Departments of Internal Medicine, Chonnam National University Medical School, 160, Baekseo‑ro, Dong‑gu, Gwangju, 61469, Republic of Korea.,Departments of Internal Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Seong Kwon Ma
- Departments of Internal Medicine, Chonnam National University Medical School, 160, Baekseo‑ro, Dong‑gu, Gwangju, 61469, Republic of Korea.,Departments of Internal Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Sontyana Adonijah Graham
- Department of Biomedical Sciences, BK21 PLUS Center for Creative Biomedical Scientists, Chonnam National University Medical School, 160, Baekseo‑ro, Dong‑gu, Gwangju, 61469, Republic of Korea.,BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun-gun, Jeollanam-do, Republic of Korea
| | - Soo Wan Kim
- Departments of Internal Medicine, Chonnam National University Medical School, 160, Baekseo‑ro, Dong‑gu, Gwangju, 61469, Republic of Korea.,Departments of Internal Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences, BK21 PLUS Center for Creative Biomedical Scientists, Chonnam National University Medical School, 160, Baekseo‑ro, Dong‑gu, Gwangju, 61469, Republic of Korea. .,BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun-gun, Jeollanam-do, Republic of Korea.
| | - Eun Hui Bae
- Departments of Internal Medicine, Chonnam National University Medical School, 160, Baekseo‑ro, Dong‑gu, Gwangju, 61469, Republic of Korea. .,Departments of Internal Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea.
| |
Collapse
|
3
|
Pisarenko O, Studneva I. Modulating the Bioactivity of Nitric Oxide as a Therapeutic Strategy in Cardiac Surgery. J Surg Res 2020; 257:178-188. [PMID: 32835951 DOI: 10.1016/j.jss.2020.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/29/2020] [Accepted: 07/11/2020] [Indexed: 12/29/2022]
Abstract
Cardiac surgery, including cardioplegic arrest and extracorporeal circulation, causes endothelial dysfunction, which can lead to no-reflow phenomenon and reduction of myocardial pump function. Nitric oxide (NO) deficiency is involved in this pathologic process, thereby providing a fundamental basis for the use of NO replacement therapy. Presently used drugs and additives to cardioplegic and heart preservation solutions are not able to reliably protect endothelial cells and cardiomyocytes from ischemia-reperfusion injury. This review discusses promising NO-releasing compounds of various chemical classes for cardioplegia and reperfusion, which effectively maintain NO homeostasis under experimental conditions, and presents the mechanisms of their action on the cardiovascular system. Incomplete preclinical studies and a lack of toxicity assessment, however, hinder translation of these drug candidates into the clinic. Perspectives for modulation of endothelial function using NO-mediated mechanisms are discussed. They are based on the cardioprotective potential of targeting vascular gap junctions and endothelial ion channels, intracoronary administration of progenitor cells, and endothelial-specific microRNAs. Some of these strategies may provide important therapeutic benefits for human cardiovascular interventions.
Collapse
Affiliation(s)
- Oleg Pisarenko
- National Medical Research Center for Cardiology, Institute of Experimental Cardiology, Moscow, Russian Federation.
| | - Irina Studneva
- National Medical Research Center for Cardiology, Institute of Experimental Cardiology, Moscow, Russian Federation
| |
Collapse
|
4
|
Abstract
The microcirculation maintains tissue homeostasis through local regulation of blood flow and oxygen delivery. Perturbations in microvascular function are characteristic of several diseases and may be early indicators of pathological changes in the cardiovascular system and in parenchymal tissue function. These changes are often mediated by various reactive oxygen species and linked to disruptions in pathways such as vasodilation or angiogenesis. This overview compiles recent advances relating to redox regulation of the microcirculation by adopting both cellular and functional perspectives. Findings from a variety of vascular beds and models are integrated to describe common effects of different reactive species on microvascular function. Gaps in understanding and areas for further research are outlined. © 2020 American Physiological Society. Compr Physiol 10:229-260, 2020.
Collapse
Affiliation(s)
- Andrew O Kadlec
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - David D Gutterman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Medicine-Division of Cardiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
5
|
The Anti-Inflammatory, Anti-Oxidative, and Anti-Apoptotic Benefits of Stem Cells in Acute Ischemic Kidney Injury. Int J Mol Sci 2019; 20:ijms20143529. [PMID: 31330934 PMCID: PMC6678402 DOI: 10.3390/ijms20143529] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 12/11/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) plays a significant role in the pathogenesis of acute kidney injury (AKI). The complicated interaction between injured tubular cells, activated endothelial cells, and the immune system leads to oxidative stress and systemic inflammation, thereby exacerbating the apoptosis of renal tubular cells and impeding the process of tissue repair. Stem cell therapy is an innovative approach to ameliorate IRI due to its antioxidative, immunomodulatory, and anti-apoptotic properties. Therefore, it is crucial to understand the biological effects and mechanisms of action of stem cell therapy in the context of acute ischemic AKI to improve its therapeutic benefits. The recent finding that treatment with conditioned medium (CM) derived from stem cells is likely an effective alternative to conventional stem cell transplantation increases the potential for future therapeutic uses of stem cell therapy. In this review, we discuss the recent findings regarding stem cell-mediated cytoprotection, with a focus on the anti-inflammatory effects via suppression of oxidative stress and uncompromised immune responses following AKI. Stem cell-derived CM represents a favorable approach to stem cell-based therapy and may serve as a potential therapeutic strategy against acute ischemic AKI.
Collapse
|
6
|
Yu H, Kalogeris T, Korthuis RJ. Reactive species-induced microvascular dysfunction in ischemia/reperfusion. Free Radic Biol Med 2019; 135:182-197. [PMID: 30849489 PMCID: PMC6503659 DOI: 10.1016/j.freeradbiomed.2019.02.031] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/26/2019] [Accepted: 02/26/2019] [Indexed: 12/13/2022]
Abstract
Vascular endothelial cells line the inner surface of the entire cardiovascular system as a single layer and are involved in an impressive array of functions, ranging from the regulation of vascular tone in resistance arteries and arterioles, modulation of microvascular barrier function in capillaries and postcapillary venules, and control of proinflammatory and prothrombotic processes, which occur in all segments of the vascular tree but can be especially prominent in postcapillary venules. When tissues are subjected to ischemia/reperfusion (I/R), the endothelium of resistance arteries and arterioles, capillaries, and postcapillary venules become dysfunctional, resulting in impaired endothelium-dependent vasodilator and enhanced endothelium-dependent vasoconstrictor responses along with increased vulnerability to thrombus formation, enhanced fluid filtration and protein extravasation, and increased blood-to-interstitium trafficking of leukocytes in these functionally distinct segments of the microcirculation. The number of capillaries open to flow upon reperfusion also declines as a result of I/R, which impairs nutritive perfusion. All of these pathologic microvascular events involve the formation of reactive species (RS) derived from molecular oxygen and/or nitric oxide. In addition to these effects, I/R-induced RS activate NLRP3 inflammasomes, alter connexin/pannexin signaling, provoke mitochondrial fission, and cause release of microvesicles in endothelial cells, resulting in deranged function in arterioles, capillaries, and venules. It is now apparent that this microvascular dysfunction is an important determinant of the severity of injury sustained by parenchymal cells in ischemic tissues, as well as being predictive of clinical outcome after reperfusion therapy. On the other hand, RS production at signaling levels promotes ischemic angiogenesis, mediates flow-induced dilation in patients with coronary artery disease, and instigates the activation of cell survival programs by conditioning stimuli that render tissues resistant to the deleterious effects of prolonged I/R. These topics will be reviewed in this article.
Collapse
Affiliation(s)
- Hong Yu
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, 1 Hospital Drive, Columbia, MO 65212, USA
| | - Ted Kalogeris
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, 1 Hospital Drive, Columbia, MO 65212, USA
| | - Ronald J Korthuis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, 1 Hospital Drive, Columbia, MO 65212, USA; Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Drive, Columbia, MO 65211, USA.
| |
Collapse
|
7
|
Chatterjee S. Endothelial Mechanotransduction, Redox Signaling and the Regulation of Vascular Inflammatory Pathways. Front Physiol 2018; 9:524. [PMID: 29930512 PMCID: PMC5999754 DOI: 10.3389/fphys.2018.00524] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/24/2018] [Indexed: 12/13/2022] Open
Abstract
The endothelium that lines the interior of blood vessels is directly exposed to blood flow. The shear stress arising from blood flow is “sensed” by the endothelium and is “transduced” into biochemical signals that eventually control vascular tone and homeostasis. Sensing and transduction of physical forces occur via signaling processes whereby the forces associated with blood flow are “sensed” by a mechanotransduction machinery comprising of several endothelial cell elements. Endothelial “sensing” involves converting the physical cues into cellular signaling events such as altered membrane potential and activation of kinases, which are “transmission” signals that cause oxidant production. Oxidants produced are the “transducers” of the mechanical signals? What is the function of these oxidants/redox signals? Extensive data from various studies indicate that redox signals initiate inflammation signaling pathways which in turn can compromise vascular health. Thus, inflammation, a major response to infection or endotoxins, can also be initiated by the endothelium in response to various flow patterns ranging from aberrant flow to alteration of flow such as cessation or sudden increase in blood flow. Indeed, our work has shown that endothelial mechanotransduction signaling pathways participate in generation of redox signals that affect the oxidant and inflammation status of cells. Our goal in this review article is to summarize the endothelial mechanotransduction pathways that are activated with stop of blood flow and with aberrant flow patterns; in doing so we focus on the complex link between mechanical forces and inflammation on the endothelium. Since this “inflammation susceptible” phenotype is emerging as a trigger for pathologies ranging from atherosclerosis to rejection post-organ transplant, an understanding of the endothelial machinery that triggers these processes is very crucial and timely.
Collapse
Affiliation(s)
- Shampa Chatterjee
- Department of Physiology, Perelman School of Medicine, Institute for Environmental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
8
|
Hentia C, Rizzato A, Camporesi E, Yang Z, Muntean DM, Săndesc D, Bosco G. An overview of protective strategies against ischemia/reperfusion injury: The role of hyperbaric oxygen preconditioning. Brain Behav 2018; 8:e00959. [PMID: 29761012 PMCID: PMC5943756 DOI: 10.1002/brb3.959] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 02/12/2018] [Accepted: 02/18/2018] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Ischemia/reperfusion (I/R) injury, such as myocardial infarction, stroke, and peripheral vascular disease, has been recognized as the most frequent causes of devastating disorders and death currently. Protective effect of various preconditioning stimuli, including hyperbaric oxygen (HBO), has been proposed in the management of I/R. METHODS In this study, we searched and reviewed up-to-date published papers to explore the pathophysiology of I/R injury and to understand the mechanisms underlying the protective effect of HBO as conditioning strategy. RESULTS Animal study and clinic observation support the notion that HBO therapy and conditioning provide beneficial effect against the deleterious effects of postischemic reperfusion. Several explanations have been proposed. The first likely mechanism may be that HBO counteracts hypoxia and reduces I/R injury by improving oxygen delivery to an area with diminished blood flow. Secondly, by reducing hypoxia-ischemia, HBO reduces all the pathological events as a consequence of hypoxia, including tissue edema, increased affective area permeability, postischemia derangement of tissue metabolism, and inflammation. Thirdly, HBO may directly affect cell apoptosis, signal transduction, and gene expression in those that are sensitive to oxygen or hypoxia. HBO provides a reservoir of oxygen at cellular level not only carried by blood, but also by diffusion from the interstitial tissue where it reaches high concentration that may last for several hours, improves endothelial function and rheology, and decreases local inflammation and edema. CONCLUSION Evidence suggests the benefits of HBO when used as a preconditioning stimulus in the setting of I/R injury. Translating the beneficial effects of HBO into current practice requires, as for the "conditioning strategies", a thorough consideration of risk factors, comorbidities, and comedications that could interfere with HBO-related protection.
Collapse
Affiliation(s)
- Ciprian Hentia
- Master II level in Hyperbaric Medicine Department of Biomedical Sciences University of Padova Padova Italy.,Faculty of Medicine "Victor Babeș" University of Medicine and Pharmacy Timișoara Romania
| | - Alex Rizzato
- Master II level in Hyperbaric Medicine Department of Biomedical Sciences University of Padova Padova Italy
| | | | - Zhongjin Yang
- The Institute for Human Performance SUNY Upstate Medical University Syracuse NY USA
| | - Danina M Muntean
- Faculty of Medicine "Victor Babeș" University of Medicine and Pharmacy Timișoara Romania.,Center for Translational Research and Systems Medicine "Victor Babeș" University of Medicine and Pharmacy Timișoara Romania
| | - Dorel Săndesc
- Faculty of Medicine "Victor Babeș" University of Medicine and Pharmacy Timișoara Romania
| | - Gerardo Bosco
- Master II level in Hyperbaric Medicine Department of Biomedical Sciences University of Padova Padova Italy
| |
Collapse
|