1
|
Holzer C, Franzke YJ. Beyond Electrons: Correlation and Self-Energy in Multicomponent Density Functional Theory. Chemphyschem 2024; 25:e202400120. [PMID: 38456204 DOI: 10.1002/cphc.202400120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/09/2024]
Abstract
Post-Kohn-Sham methods are used to evaluate the ground-state correlation energy and the orbital self-energy of systems consisting of multiple flavors of different fermions. Starting from multicomponent density functional theory, suitable ways to arrive at the corresponding multicomponent random-phase approximation and the multicomponent Green's functionG W ${GW}$ approximation, including relativistic effects, are outlined. Given the importance of both of this methods in the development of modern Kohn-Sham density functional approximations, this work will provide a foundation to design advanced multicomponent density functional approximations. Additionally, theG W ${GW}$ quasiparticle energies are needed to study light-matter interactions with the Bethe-Salpeter equation.
Collapse
Affiliation(s)
- Christof Holzer
- Karlsruhe Institute of Technology (KIT), Institute of Theoretical Solid State Physics, Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Yannick J Franzke
- Friedrich Schiller University Jena, Otto Schott Institute of Materials Research, Löbdergraben 32, 07743, Jena, Germany
| |
Collapse
|
2
|
Hoyer CE, Hu H, Lu L, Knecht S, Li X. Relativistic Kramers-Unrestricted Exact-Two-Component Density Matrix Renormalization Group. J Phys Chem A 2022; 126:5011-5020. [PMID: 35881436 DOI: 10.1021/acs.jpca.2c02150] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work we develop a variational relativistic density matrix renormalization group (DMRG) approach within the exact-two-component (X2C) framework (X2C-DMRG), using spinor orbitals optimized with the two-component relativistic complete active space self-consistent field. We investigate fine-structure splittings of p- (Ga, In, Tl) and d-block (Sc, Y, La) atoms and excitation energies of monohydride molecules (GeH, SnH, and TlH) with X2C-DMRG calculations using an all-electron relativistic Hamiltonian in a Kramers-unrestricted basis. We find that X2C-DMRG yields accurate 2P and 2D splittings compared to multireference configuration interaction with singles and doubles (MRCISD). We also investigated the degree of symmetry breaking in the atomic multiplets and convergence of electron correlation in the total energies. Symmetry breaking can be large in some cases (∼30 meV); however, increasing the number of renormalized block states m for the DMRG optimization recovers the symmetry breaking by several orders of magnitude. Encouragingly, we find the convergence of electron correlation to be close to MRCISDTQ5 quality. Relativistic X2C-DMRG approaches are important for cases where spin-orbit coupling is significant and the underlying reference wave function requires a large determinantal space. We are able to obtain quantitatively correct fine-structure splittings for systems up to 1019 number of determinants with traditional CI approaches, which are currently unfeasible to converge for the field.
Collapse
Affiliation(s)
- Chad E Hoyer
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Hang Hu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Lixin Lu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Stefan Knecht
- Algorithmiq Ltd., Kanavakatu 3C, FI-00160 Helsinki, Finland.,Abteilung SHE Chemie, GSI Helmholtzzentrum für Schwerionenforschung, DE-64291 Darmstadt, Germany.,Department Chemie, Johannes-Gutenberg Universität Mainz, DE-55128 Mainz, Germany
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
3
|
Abstract
Intersystem crossing (ISC), a vital component of the electronic and nuclear transitions that compose photophysics, has been successfully simulated in light elements and transition metal complexes. Derived from the Z-dependent spin-orbit coupling (SOC), ISC is expected to be of greater importance in heavier elements, but few attempts have been made at the simulation of ISC in lanthanides or actinides. In this work, we explore several of the challenges that will need to be overcome in order to treat ISC in late-row elements, including the loss of spin as a good quantum number, the need to include SOC variationally via two- or four-component electronic structure, and the high density of states present in late-row complexes. Density functional theory (DFT) calculations are used to illustrate several of these effects, while a model Hamiltonian is used to illustrate the importance of momentum rescaling in surface hopping simulations of strongly coupled states.
Collapse
Affiliation(s)
- Andrew J S Valentine
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
4
|
Sharma P, Jenkins AJ, Scalmani G, Frisch MJ, Truhlar DG, Gagliardi L, Li X. Exact-Two-Component Multiconfiguration Pair-Density Functional Theory. J Chem Theory Comput 2022; 18:2947-2954. [PMID: 35384665 DOI: 10.1021/acs.jctc.2c00062] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecules containing late-row elements exhibit large relativistic effects. To account for both relativistic effects and electron correlation in a computationally inexpensive way, we derived a formulation of multiconfiguration pair-density functional theory with the relativistic exact-two-component Hamiltonian (X2C-MC-PDFT). In this new method, relativistic effects are included during variational optimization of a reference wave function by exact-two-component complete active-space self-consistent-field (X2C-CASSCF) theory, followed by an energy evaluation using pair-density functional theory. Benchmark studies of excited-state and ground-state fine-structure splitting of atomic species show that X2C-MC-PDFT can significantly improve the X2C-CASSCF results by introducing additional state-specific electron correlation.
Collapse
Affiliation(s)
- Prachi Sharma
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Andrew J Jenkins
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Giovanni Scalmani
- Gaussian Inc., 340 Quinnipiac Street, Building 40, Wallingford, Connecticut 06492, United States
| | - Michael J Frisch
- Gaussian Inc., 340 Quinnipiac Street, Building 40, Wallingford, Connecticut 06492, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Laura Gagliardi
- Department of Chemistry, University of Chicago, 5735 S Ellis Avenue, Chicago, Illinois 60637, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
5
|
Kasper JM, Li X, Kozimor SA, Batista ER, Yang P. Relativistic Effects in Modeling the Ligand K-Edge X-ray Absorption Near-Edge Structure of Uranium Complexes. J Chem Theory Comput 2022; 18:2171-2179. [PMID: 35274960 DOI: 10.1021/acs.jctc.1c00851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Accurate modeling of the complex electronic structure of actinide complexes requires full inclusion of relativistic effects. In this study, we examine the effect of explicit inclusion of spin-orbit coupling (SOC) versus scalar relativistic effects on the predicted spectra for heavy-element complexes. In this study, we employ a relativistic two-component Hamiltonian in the X2C form with all of the electrons in the system being considered explicitly to compare and contrast with previous studies that included the relativistic effects by means of relativistic effective core potentials (RECPs). A few uranium complexes are chosen as model systems. Comparison of the computed Cl K-edge X-ray absorption spectra with experimental data shows significantly improved agreement when a variational relativistic treatment of SOC is performed. In particular, we note the importance of SOC terms to obtain not only correct transition energies but also correct intensities for these heavy-element complexes because of the redistribution of ligand bonding character among the valence MOs. While RECPs generally agree well with all-electron scalar relativistic calculations, there are some differences in the predicted spectra of open-shell systems. These methods are still suitable for broad application to analyze the qualitative nature of transitions in X-ray absorption spectra, but caution is recommended for quantitative analysis, as SOC can be non-negligible for both open- and closed-shell heavy-element systems.
Collapse
Affiliation(s)
- Joseph M Kasper
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States.,Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States.,Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Stosh A Kozimor
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Enrique R Batista
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Ping Yang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
6
|
Zhang T, Liu X, Valeev EF, Li X. Toward the Minimal Floating Operation Count Cholesky Decomposition of Electron Repulsion Integrals. J Phys Chem A 2021; 125:4258-4265. [PMID: 33970626 DOI: 10.1021/acs.jpca.1c02317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As quantum chemistry calculations deal with molecular systems of increasing size, the memory requirement to store electron-repulsion integrals (ERIs) greatly outpaces the physical memory available in computing hardware. The Cholesky decomposition of ERIs provides a convenient yet accurate technique to reduce the storage requirement of integrals. Recent developments of a two-step algorithm have drastically reduced the memory operation (MOP) count, leaving the floating operation (FLOP) count as the last frontier of cost reduction in the Cholesky ERI algorithm. In this report, we introduce a dynamic integral tracking, reusing, and compression/elimination protocol embedded in the two-step Cholesky ERI method. Benchmark studies suggest that this technique becomes particularly advantageous when the basis set consists of many computationally expensive high-angular-momentum basis functions. With this dynamic-ERI improvement, the Cholesky ERI approach proves to be a highly efficient algorithm with minimal FLOP and MOP count.
Collapse
Affiliation(s)
- Tianyuan Zhang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Xiaolin Liu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Edward F Valeev
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States.,Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|