1
|
Lin FC, Lin SM, Godfrey SS. Hidden social complexity behind vocal and acoustic communication in non-avian reptiles. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230200. [PMID: 38768204 PMCID: PMC11391309 DOI: 10.1098/rstb.2023.0200] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 05/22/2024] Open
Abstract
Social interactions are inevitable in the lives of most animals, since most essential behaviours require interaction with conspecifics, such as mating and competing for resources. Non-avian reptiles are typically viewed as solitary animals that predominantly use their vision and olfaction to communicate with conspecifics. Nevertheless, in recent years, evidence is mounting that some reptiles can produce sounds and have the potential for acoustic communication. Reptiles that can produce sound have an additional communicative channel (in addition to visual/olfactory channels), which could suggest they have a higher communicative complexity, the evolution of which is assumed to be driven by the need of social interactions. Thus, acoustic reptiles may provide an opportunity to unveil the true social complexity of reptiles that are usually thought of as solitary. This review aims to reveal the hidden social interactions behind the use of sounds in non-avian reptiles. Our review suggests that the potential of vocal and acoustic communication and the complexity of social interactions may be underestimated in non-avian reptiles, and that acoustic reptiles may provide a great opportunity to uncover the coevolution between sociality and communication in non-avian reptiles. This article is part of the theme issue 'The power of sound: unravelling how acoustic communication shapes group dynamics'.
Collapse
Affiliation(s)
- Feng-Chun Lin
- Department of Zoology, University of Otago , Dunedin, New Zealand
| | - Si-Min Lin
- School of Life Science, National Taiwan Normal University , Taipei, Taiwan
| | | |
Collapse
|
2
|
D'Amelio PB, Covas R, Ferreira AC, Fortuna R, Silva LR, Theron F, Rybak F, Doutrelant C. Benefits of Pair-Bond Duration on Reproduction in a Lifelong Monogamous Cooperative Passerine. Am Nat 2024; 203:576-589. [PMID: 38635359 DOI: 10.1086/729436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
AbstractLong-term social and genetic monogamy is rare in animals except birds, but even in birds it is infrequent and poorly understood. We investigated possible advantages of monogamy in a colonial, facultative cooperatively breeding bird from an arid, unpredictable environment, the sociable weaver (Philetairus socius). We documented divorce and extrapair paternity of 703 pairs over 10 years and separated effects of pair duration from breeding experience by analyzing longitudinal and cross-sectional datasets. Parts of the colonies were protected from nest predation, thereby limiting its stochastic and thus confounding effect on fitness measures. We found that 6.4% of sociable weaver pairs divorced and 2.2% of young were extrapair. Longer pair-bonds were associated with more clutches and fledglings per season and with reproducing earlier and later in the season, when snake predation is lower, but not with increased egg or fledgling mass or with nestling survival. Finally, the number of helpers at the nest increased with pair-bond duration. Results were similar for protected and unprotected nests. We suggest that long-term monogamy is associated with a better capacity for exploiting a temporally unpredictable environment and helps to form larger groups. These results can contribute to our understanding of why long-term monogamy is frequently associated with unpredictable environments and cooperation.
Collapse
|
3
|
Teo EJM, Bull CM, Burzacott D, Zalucki MP, Furlong MJ, Barker D, Barker SC. The abundance and geographic distributions of two species of ticks in South Australia: Bundey Bore revisited. AUSTRAL ECOL 2023. [DOI: 10.1111/aec.13284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Ernest J. M. Teo
- Department of Parasitology, School of Chemistry & Molecular Biosciences The University of Queensland Brisbane Queensland Australia
| | - C. Michael Bull
- School of Biological Sciences Flinders University Adelaide South Australia Australia
| | - Dale Burzacott
- School of Biological Sciences Flinders University Adelaide South Australia Australia
| | - Myron P. Zalucki
- School of Biological Sciences The University of Queensland Brisbane Queensland Australia
| | - Michael J. Furlong
- School of Biological Sciences The University of Queensland Brisbane Queensland Australia
| | - Dayana Barker
- School of Veterinary Science The University of Queensland Gatton Queensland Australia
| | - Stephen C. Barker
- Department of Parasitology, School of Chemistry & Molecular Biosciences The University of Queensland Brisbane Queensland Australia
| |
Collapse
|
4
|
Shea GM. Nomenclature of supra-generic units within the Family Scincidae (Squamata). Zootaxa 2021; 5067:301-351. [PMID: 34810739 DOI: 10.11646/zootaxa.5067.3.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Indexed: 11/04/2022]
Abstract
The modern classification of skinks is based on a nomenclature that dates to the 1970s. However, there are a number of earlier names in the family group that have been overlooked by recent workers. These names are identified and their validity with respect to the International Code of Zoological Nomenclature investigated, along with their type genera. In most cases, use of these names to supplant junior synonyms in modern day use is avoidable by use of the Reversal of Precedence articles of the Code, but the names remain available in case of future divisions at the tribe and subtribe level. Other names are unavailable due to homonymy, either of their type genera or the stems from similar but non-homonymous type genera. However, the name Egerniini is replaced by Tiliquini, due to a limited timespan of use of Egerniini. A new classification of the Family Scincidae is proposed, providing a more extensive use of Code-regulated levels of classification, including tribes and subtribes, and a detailed synonymy provided for each taxonomic unit.
Collapse
Affiliation(s)
- Glenn M Shea
- Sydney School of Veterinary Science B01, University of Sydney, NSW 2006, Australia Australian Museum Research Institute, Australian Museum, 1 William St, Sydney, NSW 2010, Australia .
| |
Collapse
|
5
|
Are lizards capable of inhibitory control? Performance on a semi-transparent version of the cylinder task in five species of Australian skinks. Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-020-02897-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract
Inhibitory control, the inhibition of prepotent actions, is essential for higher-order cognitive processes such as planning, reasoning, and self-regulation. Individuals and species differ in inhibitory control. Identifying what influences inhibitory control ability within and between species is key to understanding how it evolved. We compared performance in the cylinder task across five lizard species: tree skinks (Egernia striolata), gidgee skinks (Egernia stokesii), eastern blue-tongue skinks (Tiliqua s. scincoides), sleepy lizards (Tiliqua r. asper), and eastern water skinks (Eulamprus quoyii). In our task, animals had to inhibit the prepotent motor response of directly approaching a reward placed within a semi-transparent mesh cylinder and instead reach in through the side openings. Additionally, in three lizard species, we compared performance in the cylinder task to reversal learning to determine the task specificity of inhibitory ability. Within species, neither sex, origin, body condition, neophobia, nor pre-experience with other cognitive tests affected individual performance. Species differed in motor response inhibition: Blue-tongue skinks made fewer contacts with the semi-transparent cylinder wall than all other species. Blue-tongue skinks also had lower body condition than the other species which suggest motivation as the underlying cause for species differences in task performance. Moreover, we found no correlation between inhibitory ability across different experiments. This is the first study comparing cylinder task performance among lizard species. Given that inhibitory control is probably widespread in lizards, motor response inhibition as exercised in the cylinder task appears to have a long evolutionary history and is likely fundamental to survival and fitness.
Significance
The study of lizard cognition is receiving increasing attention. Lizards are a diverse group with a wide range of ecological attributes and represent a model system through which we can test a wide range of hypotheses relating to cognitive evolution. Furthermore, considering their evolutionary history, studying non-avian reptile cognition can help understand the evolution of different cognitive abilities including inhibitory control. Here, we provide a comparison of inhibitory control ability in five lizard species. Consequently, we are able to, firstly, validate a method (the cylinder task) initially developed for the use in mammals and birds, for use in lizards, and secondly, collect valuable data on inhibitory control in a poorly studied group with respect to cognitive ability. Our study suggests non-cognitive factors as a major influence on cylinder task performance, which is in agreement with previous studies of other vertebrates.
Collapse
|
6
|
Van Dyke JU, Thompson MB, Burridge CP, Castelli MA, Clulow S, Dissanayake DSB, Dong CM, Doody JS, Edwards DL, Ezaz T, Friesen CR, Gardner MG, Georges A, Higgie M, Hill PL, Holleley CE, Hoops D, Hoskin CJ, Merry DL, Riley JL, Wapstra E, While GM, Whiteley SL, Whiting MJ, Zozaya SM, Whittington CM. Australian lizards are outstanding models for reproductive biology research. AUST J ZOOL 2020. [DOI: 10.1071/zo21017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Australian lizards are a diverse group distributed across the continent and inhabiting a wide range of environments. Together, they exhibit a remarkable diversity of reproductive morphologies, physiologies, and behaviours that is broadly representative of vertebrates in general. Many reproductive traits exhibited by Australian lizards have evolved independently in multiple lizard lineages, including sociality, complex signalling and mating systems, viviparity, and temperature-dependent sex determination. Australian lizards are thus outstanding model organisms for testing hypotheses about how reproductive traits function and evolve, and they provide an important basis of comparison with other animals that exhibit similar traits. We review how research on Australian lizard reproduction has contributed to answering broader evolutionary and ecological questions that apply to animals in general. We focus on reproductive traits, processes, and strategies that are important areas of current research, including behaviours and signalling involved in courtship; mechanisms involved in mating, egg production, and sperm competition; nesting and gestation; sex determination; and finally, birth in viviparous species. We use our review to identify important questions that emerge from an understanding of this body of research when considered holistically. Finally, we identify additional research questions within each topic that Australian lizards are well suited for reproductive biologists to address.
Collapse
|
7
|
Dairy cows fed a low energy diet before dry-off show signs of hunger despite ad libitum access. Sci Rep 2019; 9:16159. [PMID: 31695053 PMCID: PMC6834606 DOI: 10.1038/s41598-019-51866-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 10/01/2019] [Indexed: 11/08/2022] Open
Abstract
Drying-off is one important management step in commercial dairy farms and consists of ceasing milk production artificially at a specific point in time, generally 2 months before the next calving. Drying-off typically comprises dietary changes as well as gradual or abrupt changes in daily milking frequency, which may challenge the welfare of high-yielding cows. This study investigated the isolated and combined effects of different feed energy densities (normal lactation diet versus energy-reduced diet, both offered ad libitum) and daily milking frequencies (twice versus once) on the feeding motivation of dairy cows on two separate days prior to dry-off (i.e. the day of last milking) using a push-gate feeder. During both days, cows on the energy-reduced diet pushed more than five times more weight to earn the final feed reward and were nearly ten times faster to feed on the first reward than cows on the normal lactation diet. Illustrating the importance of developing more animal welfare-friendly dry-off management, these results illustrate that cows show signs of hunger prior to dry-off when provided a diet with reduced energy density, although offered for ad libitum intake.
Collapse
|
8
|
Bower DS, Brannelly LA, McDonald CA, Webb RJ, Greenspan SE, Vickers M, Gardner MG, Greenlees MJ. A review of the role of parasites in the ecology of reptiles and amphibians. AUSTRAL ECOL 2018. [DOI: 10.1111/aec.12695] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Deborah S. Bower
- College of Science and Engineering; James Cook University; Townsville Queensland 4811 Australia
- School of Environmental and Rural Science; University of New England; Armidale New South Wales Australia
| | - Laura A. Brannelly
- Department of Biological Sciences; University of Pittsburgh; Pittsburgh Pennsylvania USA
| | - Cait A. McDonald
- Department of Ecology and Evolutionary Biology; Cornell University; Ithaca New York USA
| | - Rebecca J. Webb
- College of Public Health, Medical and Veterinary Sciences; James Cook University; Townsville Queensland Australia
| | - Sasha E. Greenspan
- Department of Biological Sciences; University of Alabama; Tuscaloosa Alabama USA
| | - Mathew Vickers
- College of Science and Engineering; James Cook University; Townsville Queensland 4811 Australia
| | - Michael G. Gardner
- College of Science and Engineering; Flinders University; Adelaide South Australia Australia
- Evolutionary Biology Unit; South Australian Museum; Adelaide South Australia Australia
| | - Matthew J. Greenlees
- School of Life and Environmental Sciences; University of Sydney; Sydney New South Wales Australia
| |
Collapse
|
9
|
Kvarnemo C. Why do some animals mate with one partner rather than many? A review of causes and consequences of monogamy. Biol Rev Camb Philos Soc 2018; 93:1795-1812. [PMID: 29687607 DOI: 10.1111/brv.12421] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 03/27/2018] [Accepted: 04/03/2018] [Indexed: 10/17/2022]
Abstract
Why do some animals mate with one partner rather than many? Here, I investigate factors related to (i) spatial constraints (habitat limitation, mate availability), (ii) time constraints (breeding synchrony, length of breeding season), (iii) need for parental care, and (iv) genetic compatibility, to see what support can be found in different taxa regarding the importance of these factors in explaining the occurrence of monogamy, whether shown by one sex (monogyny or monandry) or by both sexes (mutual monogamy). Focusing on reproductive rather than social monogamy whenever possible, I review the empirical literature for birds, mammals and fishes, with occasional examples from other taxa. Each of these factors can explain mating patterns in some taxa, but not in all. In general, there is mixed support for how well the factors listed above predict monogamy. The factor that shows greatest support across taxa is habitat limitation. By contrast, while a need for parental care might explain monogamy in freshwater fishes and birds, there is clear evidence that this is not the case in marine fishes and mammals. Hence, reproductive monogamy does not appear to have a single overriding explanation, but is more taxon specific. Genetic compatibility is a promising avenue for future work likely to improve our understanding of monogamy and other mating patterns. I also discuss eight important consequences of reproductive monogamy: (i) parentage, (ii) parental care, (iii) eusociality and altruism, (iv) infanticide, (v) effective population size, (vi) mate choice before mating, (vii) sexual selection, and (viii) sexual conflict. Of these, eusociality and infanticide have been subject to debate, briefly summarised herein. A common expectation is that monogamy leads to little sexual conflict and no or little sexual selection. However, as reviewed here, sexual selection can be substantial under mutual monogamy, and both sexes can be subject to such selection. Under long-term mutual monogamy, mate quality is obviously more important than mate numbers, which in turn affects the need for pre-mating mate choice. Overall, I conclude that, despite much research on genetic mating patterns, reproductive monogamy is still surprisingly poorly understood and further experimental and comparative work is needed. This review identifies several areas in need of more data and also proposes new hypotheses to test.
Collapse
Affiliation(s)
- Charlotta Kvarnemo
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
10
|
Godfrey SS, Gardner MG. Lizards, ticks and contributions to Australian parasitology: C. Michael Bull (1947-2016). INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2017; 6:295-298. [PMID: 28971015 PMCID: PMC5612795 DOI: 10.1016/j.ijppaw.2017.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 08/25/2017] [Accepted: 08/29/2017] [Indexed: 11/23/2022]
Abstract
Professor C. Michael Bull was a great scientist and mentor, and an Associate Editor of this journal. While his research career spanned the fields of behavioural ecology, conservation biology and herpetology, in this article, we pay tribute to his major contribution to Australian parasitology. Mike authored more than eighty articles on host-parasite ecology, and revealed major insights into the biology and ecology of ticks from his long term study of the parapatric boundary of two tick species (Amblyomma limbatum and Bothriocroton hydrosauri) on the sleepy lizard (Tiliqua rugosa). In this article, we provide an overview of how this research journey developed to become one of the longest-running studies of lizards and their ticks, totalling 35 years of continuous surveys of ticks on lizards, and the insights and knowledge that he generated along that journey. Mike Bull was an ecologist who made a major contribution to wildlife parasitology. He began this journey studying the parapatric boundary between two ticks on a lizard. Developed into one of the longest running studies of ticks on lizards, lasting 35 years. Provided new insights into how host behaviour can influence parasite transmission.
Collapse
Affiliation(s)
| | - Michael G Gardner
- College of Science and Engineering, Flinders University, Adelaide, Australia, The Evolutionary Biology Unit, South Australian Museum, Adelaide, Australia
| |
Collapse
|