1
|
Pandey R, Bisht P, Wal P, Murti K, Ravichandiran V, Kumar N. SMAC Mimetics for the Treatment of Lung Carcinoma: Present Development and Future Prospects. Mini Rev Med Chem 2024; 24:1334-1352. [PMID: 38275029 DOI: 10.2174/0113895575269644231120104501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Uncontrolled cell growth and proliferation, which originate from lung tissue often lead to lung carcinoma and are more likely due to smoking as well as inhaled environmental toxins. It is widely recognized that tumour cells evade the ability of natural programmed death (apoptosis) and facilitates tumour progression and metastasis. Therefore investigating and targeting the apoptosis pathway is being utilized as one of the best approaches for decades. OBJECTIVE This review describes the emergence of SMAC mimetic drugs as a treatment approach, its possibilities to synergize the response along with current limitations as well as future perspective therapy for lung cancer. METHOD Articles were analysed using search engines and databases namely Pubmed and Scopus. RESULT Under cancerous circumstances, the level of Inhibitor of Apoptosis Proteins (IAPs) gets elevated, which suppresses the pathway of programmed cell death, plus supports the proliferation of lung cancer. As it is a major apoptosis regulator, natural drugs that imitate the IAP antagonistic response like SMAC mimetic agents/Diablo have been identified to trigger cell death. SMAC i.e. second mitochondria activators of caspases is a molecule produced by mitochondria, stimulates apoptosis by neutralizing/inhibiting IAP and prevents its potential responsible for the activation of caspases. Various preclinical data have proven that these agents elicit the death of lung tumour cells. Apart from inducing apoptosis, these also sensitize the cancer cells toward other effective anticancer approaches like chemo, radio, or immunotherapies. There are many SMAC mimetic agents such as birinapant, BV-6, LCL161, and JP 1201, which have been identified for diagnosis as well as treatment purposes in lung cancer and are also under clinical investigation. CONCLUSION SMAC mimetics acts in a restorative way in the prevention of lung cancer.
Collapse
Affiliation(s)
- Ruchi Pandey
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, Bihar, 844102, India
| | - Priya Bisht
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, Bihar, 844102, India
| | - Pranay Wal
- Department of Pharmacy, Pranveer Singh Institute of Technology, Kanpur, Uttar Pradesh, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, Bihar, 844102, India
| | - V Ravichandiran
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, Bihar, 844102, India
| | - Nitesh Kumar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, Bihar, 844102, India
| |
Collapse
|
2
|
Deng QF, Li C, Liu J, Ji XX, Wan XY, Wang CY, Sun H, Fang QY, Gu WQ, Ma C, Wang HY, Zhou CC, Li YX, Xie BX, Zhou SW. DNMT3A governs tyrosine kinase inhibitors responses through IAPs and in a cell senescence-dependent manner in non-small cell lung cancer. Am J Cancer Res 2023; 13:3517-3530. [PMID: 37693159 PMCID: PMC10492131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/15/2023] [Indexed: 09/12/2023] Open
Abstract
Patients with non-small cell lung cancer (NSCLC) treated with tyrosine kinase inhibitors (TKIs) inevitably exhibit drug resistance, which diminishes therapeutic effects. Nonetheless, the molecular mechanisms of TKI resistance in NSCLC remain obscure. In this study, data from clinical and TCGA databases revealed an increase in DNMT3A expression, which was correlated with a poor prognosis. Using NSCLC organoid models, we observed that high DNMT3A levels reduced TKI susceptibility of NSCLC cells via upregulating inhibitor of apoptosis proteins (IAPs). Simultaneously, the DNMT3Ahigh subset, which escaped apoptosis, underwent an early senescent-like state in a CDKN1A-dependent manner. Furthermore, the cellular senescence induced by TKIs was observed to be reversible, whereas DNMT3Ahigh cells reacquired their proliferative characteristics in the absence of TKIs, resulting in subsequent tumour recurrence and growth. Notably, the blockade of DNMT3A/IAPs signals enhanced the efficacy of TKIs in DNMT3Ahigh tumour-bearing mice, which represented a promising strategy for the effective treatment of NSCLC.
Collapse
Affiliation(s)
- Qin-Fang Deng
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of MedicineShanghai, China
| | - Chao Li
- Smartquerier Gene Technology (Shanghai) Co., Ltd.Shanghai, China
- Shanghai Engineering Research Center of Pharmaceutical TranslationShanghai, China
- Shanghai Institute for Biomedical and Pharmaceutical TechnologiesShanghai, China
| | - Jing Liu
- Smartquerier Gene Technology (Shanghai) Co., Ltd.Shanghai, China
- Shanghai Engineering Research Center of Pharmaceutical TranslationShanghai, China
- Shanghai Institute for Biomedical and Pharmaceutical TechnologiesShanghai, China
| | - Xian-Xiu Ji
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of MedicineShanghai, China
| | - Xiao-Ying Wan
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of MedicineShanghai, China
| | - Chun-Yan Wang
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of MedicineShanghai, China
| | - Hui Sun
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of MedicineShanghai, China
| | - Qi-Yu Fang
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of MedicineShanghai, China
| | - Wei-Qin Gu
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of MedicineShanghai, China
| | - Chao Ma
- Smartquerier Gene Technology (Shanghai) Co., Ltd.Shanghai, China
- Shanghai Engineering Research Center of Pharmaceutical TranslationShanghai, China
- Shanghai Institute for Biomedical and Pharmaceutical TechnologiesShanghai, China
| | - Hui-Yong Wang
- Smartquerier Gene Technology (Shanghai) Co., Ltd.Shanghai, China
- Shanghai Engineering Research Center of Pharmaceutical TranslationShanghai, China
- Shanghai Institute for Biomedical and Pharmaceutical TechnologiesShanghai, China
| | - Cai-Cun Zhou
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of MedicineShanghai, China
| | - Yi-Xue Li
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of SciencesHangzhou, Zhejiang, China
- Guangzhou LaboratoryGuangzhou, Guangdong, China
- Collaborative Innovation Center for Genetics and Development, Fudan UniversityShanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China
- Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of SciencesShanghai, China
| | - Bo-Xiong Xie
- Department of Thoracic, Shanghai Pulmonary Hospital, Tongji University School of MedicineShanghai, China
| | - Song-Wen Zhou
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of MedicineShanghai, China
| |
Collapse
|
3
|
Sollazzo M, Paglia S, Di Giacomo S, Grifoni D. Apoptosis inhibition restrains primary malignant traits in different Drosophila cancer models. Front Cell Dev Biol 2023; 10:1043630. [PMID: 36704198 PMCID: PMC9871239 DOI: 10.3389/fcell.2022.1043630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Tumor cells exploit multiple mechanisms to evade apoptosis, hence the strategies aimed at reactivating cell death in cancer. However, recent studies are revealing that dying cells play remarkable pro-oncogenic roles. Among the mechanisms promoting cell death, cell competition, elicited by disparities in MYC activity in confronting cells, plays the primary role of assuring tissue robustness during development from Drosophila to mammals: cells with high MYC levels (winners) overproliferate while killing suboptimal neighbors (losers), whose death is essential to process completion. This mechanism is coopted by tumor cells in cancer initiation, where host cells succumb to high-MYC-expressing precancerous neighbors. Also in this case, inhibition of cell death restrains aberrant cell competition and rescues tissue structure. Inhibition of apoptosis may thus emerge as a good strategy to counteract cancer progression in competitive contexts; of note, we recently found a positive correlation between cell death amount at the tumor/stroma interface and MYC levels in human cancers. Here we used Drosophila to investigate the functional role of competition-dependent apoptosis in advanced cancers, observing dramatic changes in mass dimensions and composition following a boost in cell competition, rescued by apoptosis inhibition. This suggests the role of competition-dependent apoptosis be not confined to the early stages of tumorigenesis. We also show that apoptosis inhibition, beside restricting cancer mass, is sufficient to rescue tissue architecture and counteract cell migration in various cancer contexts, suggesting that a strong activation of the apoptotic pathways intensifies cancer burden by affecting distinct phenotypic traits at different stages of the disease.
Collapse
Affiliation(s)
- Manuela Sollazzo
- CanceЯEvolutionLab, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Simona Paglia
- CanceЯEvolutionLab, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Simone Di Giacomo
- CanceЯEvolutionLab, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Daniela Grifoni
- CanceЯEvolutionLab, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy,CanceЯEvolutionLab, Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy,*Correspondence: Daniela Grifoni,
| |
Collapse
|
4
|
Abolfathi H, Arabi M, Sheikhpour M. A literature review of microRNA and gene signaling pathways involved in the apoptosis pathway of lung cancer. Respir Res 2023; 24:55. [PMID: 36800962 PMCID: PMC9938615 DOI: 10.1186/s12931-023-02366-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Lung cancer is one of the leading causes of death in the world and the deadliest of all cancers. Apoptosis is a key pathway in regulating the cell growth rate, proliferation, and occurrence of lung cancer. This process is controlled by many molecules, such as microRNAs and their target genes. Therefore, finding new medical approaches such as exploring diagnostic and prognostic biomarkers involved in apoptosis is needed for this disease. In the present study, we aimed to identify key microRNAs and their target genes that could be used in the prognosis and diagnosis of lung cancer. METHODS Signaling pathways, genes, and microRNAs involved in the apoptotic pathway were identified by bioinformatics analysis and recent clinical studies. Bioinformatics analysis was performed on databases including NCBI, TargetScan, UALCAN, UCSC, KEGG, miRPathDB, and Enrichr, and clinical studies were extracted from PubMed, web of science, and SCOPUS databases. RESULTS NF-κB, PI3K/AKT, and MAPK pathways play critical roles in the regulation of apoptosis. MiR-146b, 146a, 21, 23a, 135a, 30a, 202, and 181 were identified as the involved microRNAs in the apoptosis signaling pathway, and IRAK1, TRAF6, Bcl-2, PTEN, Akt, PIK3, KRAS, and MAPK1 were classified as the target genes of the mentioned microRNAs respectively. The essential roles of these signaling pathways and miRNAs/target genes were approved through both databases and clinical studies. Moreover, surviving, living, BRUCE, and XIAP was the main inhibitor of apoptosis which act by regulating the apoptosis-involved genes and miRNAs. CONCLUSION Identifying the abnormal expression and regulation of miRNAs and signaling pathways in apoptosis of lung cancer can represent a novel class of biomarkers that can facilitate the early diagnosis, personalized treatment, and prediction of drug response for lung cancer patients. Therefore, studying the mechanisms of apoptosis including signaling pathways, miRNAs/target genes, and the inhibitors of apoptosis are advantageous for finding the most practical approach and reducing the pathological demonstrations of lung cancer.
Collapse
Affiliation(s)
- Hanie Abolfathi
- grid.23856.3a0000 0004 1936 8390Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, Canada
| | - Mohadeseh Arabi
- grid.420169.80000 0000 9562 2611Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran. .,Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
5
|
Crucianelli C, Jaiswal J, Vijayakumar Maya A, Nogay L, Cosolo A, Grass I, Classen AK. Distinct signaling signatures drive compensatory proliferation via S-phase acceleration. PLoS Genet 2022; 18:e1010516. [PMID: 36520882 PMCID: PMC9799308 DOI: 10.1371/journal.pgen.1010516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 12/29/2022] [Accepted: 11/08/2022] [Indexed: 12/23/2022] Open
Abstract
Regeneration relies on cell proliferation to restore damaged tissues. Multiple signaling pathways activated by local or paracrine cues have been identified to promote regenerative proliferation. How different types of tissue damage may activate distinct signaling pathways and how these differences converge on regenerative proliferation is less well defined. To better understand how tissue damage and proliferative signals are integrated during regeneration, we investigate models of compensatory proliferation in Drosophila imaginal discs. We find that compensatory proliferation is associated with a unique cell cycle profile, which is characterized by short G1 and G2 phases and, surprisingly, by acceleration of the S-phase. S-phase acceleration can be induced by two distinct signaling signatures, aligning with inflammatory and non-inflammatory tissue damage. Specifically, non-autonomous activation of JAK/STAT and Myc in response to inflammatory damage, or local activation of Ras/ERK and Hippo/Yki in response to elevated cell death, promote accelerated nucleotide incorporation during S-phase. This previously unappreciated convergence of different damaging insults on the same regenerative cell cycle program reconciles previous conflicting observations on proliferative signaling in different tissue regeneration and tumor models.
Collapse
Affiliation(s)
- Carlo Crucianelli
- Hilde-Mangold-Haus, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Janhvi Jaiswal
- Hilde-Mangold-Haus, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Ananthakrishnan Vijayakumar Maya
- Hilde-Mangold-Haus, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics, and Metabolism, Freiburg, Germany
| | - Liyne Nogay
- Hilde-Mangold-Haus, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics, and Metabolism, Freiburg, Germany
| | - Andrea Cosolo
- Hilde-Mangold-Haus, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Isabelle Grass
- Hilde-Mangold-Haus, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Anne-Kathrin Classen
- Hilde-Mangold-Haus, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Neri U, Wolf YI, Roux S, Camargo AP, Lee B, Kazlauskas D, Chen IM, Ivanova N, Zeigler Allen L, Paez-Espino D, Bryant DA, Bhaya D, Krupovic M, Dolja VV, Kyrpides NC, Koonin EV, Gophna U. Expansion of the global RNA virome reveals diverse clades of bacteriophages. Cell 2022; 185:4023-4037.e18. [PMID: 36174579 DOI: 10.1016/j.cell.2022.08.023] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/16/2022] [Accepted: 08/24/2022] [Indexed: 01/26/2023]
Abstract
High-throughput RNA sequencing offers broad opportunities to explore the Earth RNA virome. Mining 5,150 diverse metatranscriptomes uncovered >2.5 million RNA virus contigs. Analysis of >330,000 RNA-dependent RNA polymerases (RdRPs) shows that this expansion corresponds to a 5-fold increase of the known RNA virus diversity. Gene content analysis revealed multiple protein domains previously not found in RNA viruses and implicated in virus-host interactions. Extended RdRP phylogeny supports the monophyly of the five established phyla and reveals two putative additional bacteriophage phyla and numerous putative additional classes and orders. The dramatically expanded phylum Lenarviricota, consisting of bacterial and related eukaryotic viruses, now accounts for a third of the RNA virome. Identification of CRISPR spacer matches and bacteriolytic proteins suggests that subsets of picobirnaviruses and partitiviruses, previously associated with eukaryotes, infect prokaryotic hosts.
Collapse
Affiliation(s)
- Uri Neri
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Simon Roux
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Antonio Pedro Camargo
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Benjamin Lee
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Darius Kazlauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius 10257, Lithuania
| | - I Min Chen
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Natalia Ivanova
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Lisa Zeigler Allen
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, USA; Marine Biology Research Division, Scripps Institution of Oceanography, La Jolla, CA, USA
| | - David Paez-Espino
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Devaki Bhaya
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Archaeal Virology Unit, 75015 Paris, France
| | - Valerian V Dolja
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA.
| | - Nikos C Kyrpides
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | - Uri Gophna
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
7
|
Gebreegziabher Amare M, Westrick NM, Keller NP, Kabbage M. The conservation of IAP-like proteins in fungi, and their potential role in fungal programmed cell death. Fungal Genet Biol 2022; 162:103730. [PMID: 35998750 DOI: 10.1016/j.fgb.2022.103730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/07/2022] [Indexed: 11/30/2022]
Abstract
Programmed cell death (PCD) is a tightly regulated process which is required for survival and proper development of all cellular life. Despite this ubiquity, the precise molecular underpinnings of PCD have been primarily characterized in animals. Attempts to expand our understanding of this process in fungi have proven difficult as core regulators of animal PCD are apparently absent in fungal genomes, with the notable exception of a class of proteins referred to as inhibitors of apoptosis proteins (IAPs). These proteins are characterized by the conservation of a distinct Baculovirus IAP Repeat (BIR) domain and animal IAPs are known to regulate a number of processes, including cellular death, development, organogenesis, immune system maturation, host-pathogen interactions and more. IAP homologs are broadly conserved throughout the fungal kingdom, but our understanding of both their mechanism and role in fungal development/virulence is still unclear. In this review, we provide a broad and comparative overview of IAP function across taxa, with a particular focus on fungal processes regulated by IAPs. Furthermore, their putative modes of action in the absence of canonical interactors will be discussed.
Collapse
Affiliation(s)
| | - Nathaniel M Westrick
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI, USA
| | - Nancy P Keller
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI, USA
| | - Mehdi Kabbage
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI, USA.
| |
Collapse
|
8
|
García-Gutiérrez L, Fallahi E, Aboud N, Quinn N, Matallanas D. Interaction of LATS1 with SMAC links the MST2/Hippo pathway with apoptosis in an IAP-dependent manner. Cell Death Dis 2022; 13:692. [PMID: 35941108 PMCID: PMC9360443 DOI: 10.1038/s41419-022-05147-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 01/21/2023]
Abstract
Metastatic malignant melanoma is the deadliest skin cancer, and it is characterised by its high resistance to apoptosis. The main melanoma driving mutations are part of ERK pathway, with BRAF mutations being the most frequent ones, followed by NRAS, NF1 and MEK mutations. Increasing evidence shows that the MST2/Hippo pathway is also deregulated in melanoma. While mutations are rare, MST2/Hippo pathway core proteins expression levels are often dysregulated in melanoma. The expression of the tumour suppressor RASSF1A, a bona fide activator of the MST2 pathway, is silenced by promoter methylation in over half of melanomas and correlates with poor prognosis. Here, using mass spectrometry-based interaction proteomics we identified the Second Mitochondria-derived Activator of Caspases (SMAC) as a novel LATS1 interactor. We show that RASSF1A-dependent activation of the MST2 pathway promotes LATS1-SMAC interaction and negatively regulates the antiapoptotic signal mediated by the members of the IAP family. Moreover, proteomic experiments identified a common cluster of apoptotic regulators that bind to SMAC and LATS1. Mechanistic analysis shows that the LATS1-SMAC complex promotes XIAP ubiquitination and its subsequent degradation which ultimately results in apoptosis. Importantly, we show that the oncogenic BRAFV600E mutant prevents the proapoptotic signal mediated by the LATS1-SMAC complex while treatment of melanoma cell lines with BRAF inhibitors promotes the formation of this complex, indicating that inhibition of the LATS1-SMAC might be necessary for BRAFV600E-driven melanoma. Finally, we show that LATS1-SMAC interaction is regulated by the SMAC mimetic Birinapant, which requires C-IAP1 inhibition and the degradation of XIAP, suggesting that the MST2 pathway is part of the mechanism of action of Birinapant. Overall, the current work shows that SMAC-dependent apoptosis is regulated by the LATS1 tumour suppressor and supports the idea that LATS1 is a signalling hub that regulates the crosstalk between the MST2 pathway, the apoptotic network and the ERK pathway.
Collapse
Affiliation(s)
- Lucía García-Gutiérrez
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Emma Fallahi
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Nourhan Aboud
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Niall Quinn
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - David Matallanas
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
9
|
|
10
|
Witkop EM, Proestou DA, Gomez-Chiarri M. The expanded inhibitor of apoptosis gene family in oysters possesses novel domain architectures and may play diverse roles in apoptosis following immune challenge. BMC Genomics 2022; 23:201. [PMID: 35279090 PMCID: PMC8917759 DOI: 10.1186/s12864-021-08233-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/06/2021] [Indexed: 11/23/2022] Open
Abstract
Background Apoptosis plays important roles in a variety of functions, including immunity and response to environmental stress. The Inhibitor of Apoptosis (IAP) gene family of apoptosis regulators is expanded in molluscs, including eastern, Crassostrea virginica, and Pacific, Crassostrea gigas, oysters. The functional importance of IAP expansion in apoptosis and immunity in oysters remains unknown. Results Phylogenetic analysis of IAP genes in 10 molluscs identified lineage specific gene expansion in bivalve species. Greater IAP gene family expansion was observed in C. virginica than C. gigas (69 vs. 40), resulting mainly from tandem duplications. Functional domain analysis of oyster IAP proteins revealed 3 novel Baculoviral IAP Repeat (BIR) domain types and 14 domain architecture types across gene clusters, 4 of which are not present in model organisms. Phylogenetic analysis of bivalve IAPs suggests a complex history of domain loss and gain. Most IAP genes in oysters (76% of C. virginica and 82% of C. gigas), representing all domain architecture types, were expressed in response to immune challenge (Ostreid Herpesvirus OsHV-1, bacterial probionts Phaeobacter inhibens and Bacillus pumilus, several Vibrio spp., pathogenic Aliiroseovarius crassostreae, and protozoan parasite Perkinsus marinus). Patterns of IAP and apoptosis-related differential gene expression differed between the two oyster species, where C. virginica, in general, differentially expressed a unique set of IAP genes in each challenge, while C. gigas differentially expressed an overlapping set of IAP genes across challenges. Apoptosis gene expression patterns clustered mainly by resistance/susceptibility of the oyster host to immune challenge. Weighted Gene Correlation Network Analysis (WGCNA) revealed unique combinations of transcripts for 1 to 12 IAP domain architecture types, including novel types, were significantly co-expressed in response to immune challenge with transcripts in apoptosis-related pathways. Conclusions Unprecedented diversity characterized by novel BIR domains and protein domain architectures was observed in oyster IAPs. Complex patterns of gene expression of novel and conserved IAPs in response to a variety of ecologically-relevant immune challenges, combined with evidence of direct co-expression of IAP genes with apoptosis-related transcripts, suggests IAP expansion facilitates complex and nuanced regulation of apoptosis and other immune responses in oysters. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08233-6.
Collapse
|
11
|
Killing by Degradation: Regulation of Apoptosis by the Ubiquitin-Proteasome-System. Cells 2021; 10:cells10123465. [PMID: 34943974 PMCID: PMC8700063 DOI: 10.3390/cells10123465] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Apoptosis is a cell suicide process that is essential for development, tissue homeostasis and human health. Impaired apoptosis is associated with a variety of human diseases, including neurodegenerative disorders, autoimmunity and cancer. As the levels of pro- and anti-apoptotic proteins can determine the life or death of cells, tight regulation of these proteins is critical. The ubiquitin proteasome system (UPS) is essential for maintaining protein turnover, which can either trigger or inhibit apoptosis. In this review, we will describe the E3 ligases that regulate the levels of pro- and anti-apoptotic proteins and assisting proteins that regulate the levels of these E3 ligases. We will provide examples of apoptotic cell death modulations using the UPS, determined by positive and negative feedback loop reactions. Specifically, we will review how the stability of p53, Bcl-2 family members and IAPs (Inhibitor of Apoptosis proteins) are regulated upon initiation of apoptosis. As increased levels of oncogenes and decreased levels of tumor suppressor proteins can promote tumorigenesis, targeting these pathways offers opportunities to develop novel anti-cancer therapies, which act by recruiting the UPS for the effective and selective killing of cancer cells.
Collapse
|
12
|
Hounsell C, Fan Y. The Duality of Caspases in Cancer, as Told through the Fly. Int J Mol Sci 2021; 22:8927. [PMID: 34445633 PMCID: PMC8396359 DOI: 10.3390/ijms22168927] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Caspases, a family of cysteine-aspartic proteases, have an established role as critical components in the activation and initiation of apoptosis. Alongside this a variety of non-apoptotic caspase functions in proliferation, differentiation, cellular plasticity and cell migration have been reported. The activity level and context are important factors in determining caspase function. As a consequence of their critical role in apoptosis and beyond, caspases are uniquely situated to have pathological roles, including in cancer. Altered caspase function is a common trait in a variety of cancers, with apoptotic evasion defined as a "hallmark of cancer". However, the role that caspases play in cancer is much more complex, acting both to prevent and to promote tumourigenesis. This review focuses on the major findings in Drosophila on the dual role of caspases in tumourigenesis. This has major implications for cancer treatments, including chemotherapy and radiotherapy, with the activation of apoptosis being the end goal. However, such treatments may inadvertently have adverse effects on promoting tumour progression and acerbating the cancer. A comprehensive understanding of the dual role of caspases will aid in the development of successful cancer therapeutic approaches.
Collapse
Affiliation(s)
| | - Yun Fan
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK;
| |
Collapse
|
13
|
Winter N, Novatchkova M, Bachmair A. Cellular Control of Protein Turnover via the Modification of the Amino Terminus. Int J Mol Sci 2021; 22:ijms22073545. [PMID: 33805528 PMCID: PMC8037982 DOI: 10.3390/ijms22073545] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
The first amino acid of a protein has an important influence on its metabolic stability. A number of ubiquitin ligases contain binding domains for different amino-terminal residues of their substrates, also known as N-degrons, thereby mediating turnover. This review summarizes, in an exemplary way, both older and more recent findings that unveil how destabilizing amino termini are generated. In most cases, a step of proteolytic cleavage is involved. Among the over 500 proteases encoded in the genome of higher eukaryotes, only a few are known to contribute to the generation of N-degrons. It can, therefore, be expected that many processing paths remain to be discovered.
Collapse
Affiliation(s)
- Nikola Winter
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, A-1030 Vienna, Austria;
| | - Maria Novatchkova
- Vienna BioCenter, Research Institute of Molecular Pathology, A-1030 Vienna, Austria;
- Vienna BioCenter, Institute of Molecular Biotechnology, A-1030 Vienna, Austria
| | - Andreas Bachmair
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, A-1030 Vienna, Austria;
- Correspondence:
| |
Collapse
|
14
|
Lin KL, Chen SD, Lin KJ, Liou CW, Chuang YC, Wang PW, Chuang JH, Lin TK. Quality Matters? The Involvement of Mitochondrial Quality Control in Cardiovascular Disease. Front Cell Dev Biol 2021; 9:636295. [PMID: 33829016 PMCID: PMC8019794 DOI: 10.3389/fcell.2021.636295] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases are one of the leading causes of death and global health problems worldwide. Multiple factors are known to affect the cardiovascular system from lifestyles, genes, underlying comorbidities, and age. Requiring high workload, metabolism of the heart is largely dependent on continuous power supply via mitochondria through effective oxidative respiration. Mitochondria not only serve as cellular power plants, but are also involved in many critical cellular processes, including the generation of intracellular reactive oxygen species (ROS) and regulating cellular survival. To cope with environmental stress, mitochondrial function has been suggested to be essential during bioenergetics adaptation resulting in cardiac pathological remodeling. Thus, mitochondrial dysfunction has been advocated in various aspects of cardiovascular pathology including the response to ischemia/reperfusion (I/R) injury, hypertension (HTN), and cardiovascular complications related to type 2 diabetes mellitus (DM). Therefore, mitochondrial homeostasis through mitochondrial dynamics and quality control is pivotal in the maintenance of cardiac health. Impairment of the segregation of damaged components and degradation of unhealthy mitochondria through autophagic mechanisms may play a crucial role in the pathogenesis of various cardiac disorders. This article provides in-depth understanding of the current literature regarding mitochondrial remodeling and dynamics in cardiovascular diseases.
Collapse
Affiliation(s)
- Kai-Lieh Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shang-Der Chen
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kai-Jung Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Wei Liou
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yao-Chung Chuang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Wen Wang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Metabolism, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jiin-Haur Chuang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Pediatric Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tsu-Kung Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
15
|
Wang J, Dong G, Chi W, Nie Y. MiR-96 promotes myocardial infarction-induced apoptosis by targeting XIAP. Biomed Pharmacother 2021; 138:111208. [PMID: 33752931 DOI: 10.1016/j.biopha.2020.111208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 12/01/2020] [Accepted: 12/26/2020] [Indexed: 12/12/2022] Open
Abstract
Acute myocardial infarction (AMI) has becoming a common leading cause of sudden death worldwide. MiR-96 has been identified that can target anti-apoptotic related genes in various human diseases. However, its role in AMI remains unclear. In this study, we found that miR-96 was significantly upregulated in the ischemic heart of MI mice (mice with myocardial infarction) and also in the H2O2-treated neonatal rat ventricular cardiomyocytes (CMs). In response H2O2, miR-96 inhibitor could significantly promote cell viability and reduce cell apoptosis of CMs, and inhibit the expression of Cleaved caspase-3 and Bax, while promote Bcl-2 expression. In addition, downregulation of miR-96 remarkedly reduced the infarct size and the percentages of apoptotic cells in the heart tissues of MI mice, and then protected against the damaged cardiac function. Moreover, we identified that XIAP (X-linked inhibitor of apoptosis) acted as a direct target gene of miR-96, meanwhile si-XIAP could obviously reverse miR-96 inhibitor induced protective effect in H2O2-treated CMs Taken together, our study demonstrated that miR-96 promoted AMI progression by directly targeting XIAP, and inhibiting the anti-apoptotic function of XIAP (Graphical abstract), which provided a novel therapeutic target for AMI treatment.
Collapse
Affiliation(s)
- Jianxiu Wang
- Hiser Medical Center of Qingdao, Qingdao City, Shandong Province, 266033, PR China.
| | - Guiling Dong
- Hiser Medical Center of Qingdao, Qingdao City, Shandong Province, 266033, PR China
| | - Weifeng Chi
- Hiser Medical Center of Qingdao, Qingdao City, Shandong Province, 266033, PR China
| | - Yingying Nie
- Hiser Medical Center of Qingdao, Qingdao City, Shandong Province, 266033, PR China.
| |
Collapse
|
16
|
A Look into Bunyavirales Genomes: Functions of Non-Structural (NS) Proteins. Viruses 2021; 13:v13020314. [PMID: 33670641 PMCID: PMC7922539 DOI: 10.3390/v13020314] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
In 2016, the Bunyavirales order was established by the International Committee on Taxonomy of Viruses (ICTV) to incorporate the increasing number of related viruses across 13 viral families. While diverse, four of the families (Peribunyaviridae, Nairoviridae, Hantaviridae, and Phenuiviridae) contain known human pathogens and share a similar tri-segmented, negative-sense RNA genomic organization. In addition to the nucleoprotein and envelope glycoproteins encoded by the small and medium segments, respectively, many of the viruses in these families also encode for non-structural (NS) NSs and NSm proteins. The NSs of Phenuiviridae is the most extensively studied as a host interferon antagonist, functioning through a variety of mechanisms seen throughout the other three families. In addition, functions impacting cellular apoptosis, chromatin organization, and transcriptional activities, to name a few, are possessed by NSs across the families. Peribunyaviridae, Nairoviridae, and Phenuiviridae also encode an NSm, although less extensively studied than NSs, that has roles in antagonizing immune responses, promoting viral assembly and infectivity, and even maintenance of infection in host mosquito vectors. Overall, the similar and divergent roles of NS proteins of these human pathogenic Bunyavirales are of particular interest in understanding disease progression, viral pathogenesis, and developing strategies for interventions and treatments.
Collapse
|
17
|
Abstract
Apoptotic processes play an important role in the development and physiology of almost all metazoan clades. In the highly diverse group of insects, apoptotic pathways have been characterized in only a few dipteran and lepidopteran species, which may not be representative of all insect species. Here, we report the first complete annotation of the apoptotic pathway in a hemipteran insect, the pea aphid Acyrthosiphon pisum. We showed that its apoptotic pathway is rewired compared to other insects, with a significant increase in the number of inhibitors of apoptosis (IAPs) and evidence for functional diversification and structural modularity of this protein family. These novelties are widespread in the aphid lineage, suggesting a yet not understood novel aphid-specific function of IAPs. Apoptosis, a conserved form of programmed cell death, shows interspecies differences that may reflect evolutionary diversification and adaptation, a notion that remains largely untested. Among insects, the most speciose animal group, the apoptotic pathway has only been fully characterized in Drosophila melanogaster, and apoptosis-related proteins have been studied in a few other dipteran and lepidopteran species. Here, we studied the apoptotic pathway in the aphid Acyrthosiphon pisum, an insect pest belonging to the Hemiptera, an earlier-diverging and distantly related order. We combined phylogenetic analyses and conserved domain identification to annotate the apoptotic pathway in A. pisum and found low caspase diversity and a large expansion of its inhibitory part, with 28 inhibitors of apoptosis (IAPs). We analyzed the spatiotemporal expression of a selected set of pea aphid IAPs and showed that they are differentially expressed in different life stages and tissues, suggesting functional diversification. Five IAPs are specifically induced in bacteriocytes, the specialized cells housing symbiotic bacteria, during their cell death. We demonstrated the antiapoptotic role of these five IAPs using heterologous expression in a tractable in vivo model, the Drosophila melanogaster developing eye. Interestingly, IAPs with the strongest antiapoptotic potential contain two BIR and two RING domains, a domain association that has not been observed in any other species. We finally analyzed all available aphid genomes and found that they all show large IAP expansion, with new combinations of protein domains, suggestive of evolutionarily novel aphid-specific functions.
Collapse
|
18
|
He Q, Liu H, Deng S, Chen X, Li D, Jiang X, Zeng W, Lu W. The Golgi Apparatus May Be a Potential Therapeutic Target for Apoptosis-Related Neurological Diseases. Front Cell Dev Biol 2020; 8:830. [PMID: 33015040 PMCID: PMC7493689 DOI: 10.3389/fcell.2020.00830] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/04/2020] [Indexed: 01/04/2023] Open
Abstract
Increasing evidence shows that, in addition to the classical function of protein processing and transport, the Golgi apparatus (GA) is also involved in apoptosis, one of the most common forms of cell death. The structure and the function of the GA is damaged during apoptosis. However, the specific effect of the GA on the apoptosis process is unclear; it may be involved in initiating or promoting apoptosis, or it may inhibit apoptosis. Golgi-related apoptosis is associated with a variety of neurological diseases including glioma, Alzheimer’s disease (AD), Parkinson’s disease (PD), and ischemic stroke. This review summarizes the changes and the possible mechanisms of Golgi structure and function during apoptosis. In addition, we also explore the possible mechanisms by which the GA regulates apoptosis and summarize the potential relationship between the Golgi and certain neurological diseases from the perspective of apoptosis. Elucidation of the interaction between the GA and apoptosis broadens our understanding of the pathological mechanisms of neurological diseases and provides new research directions for the treatment of these diseases. Therefore, we propose that the GA may be a potential therapeutic target for apoptosis-related neurological diseases.
Collapse
Affiliation(s)
- Qiang He
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hui Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Shuwen Deng
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiqian Chen
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Dong Li
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xuan Jiang
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wenbo Zeng
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wei Lu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
19
|
Mamriev D, Abbas R, Klingler FM, Kagan J, Kfir N, Donald A, Weidenfeld K, Sheppard DW, Barkan D, Larisch S. A small-molecule ARTS mimetic promotes apoptosis through degradation of both XIAP and Bcl-2. Cell Death Dis 2020; 11:483. [PMID: 32587235 PMCID: PMC7316745 DOI: 10.1038/s41419-020-2670-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
Many human cancers over-express B cell lymphoma 2 (Bcl-2) or X-linked inhibitor of apoptosis (IAP) proteins to evade cell death. The pro-apoptotic ARTS (Sept4_i2) protein binds directly to both Bcl-2 and XIAP and promotes apoptosis by stimulating their degradation via the ubiquitin-proteasome system (UPS). Here we describe a small molecule, A4, that mimics the function of ARTS. Microscale thermophoresis assays showed that A4 binds XIAP, but not cellular inhibitor of apoptosis protein 1 (cIAP1). A4 binds to a distinct ARTS binding pocket in the XIAP-BIR3 (baculoviral IAP repeat 3) domain. Like ARTS, A4 stimulated poly-ubiquitylation and UPS-mediated degradation of XIAP and Bcl-2, but not cIAP1, resulting in caspase-9 and -3 activation and apoptosis. In addition, over-expression of XIAP rescued HeLa cells from A4-induced apoptosis, consistent with the idea that A4 kills by antagonizing XIAP. On the other hand, treatment with the SMAC-mimetic Birinapant induced secretion of tumour necrosis factor-α (TNFα) and killed ~50% of SKOV-3 cells, and addition of A4 to Birinapant-treated cells significantly reduced secretion of TNFα and blocked Birinapant-induced apoptosis. This suggests that A4 acts by specifically targeting XIAP. The effect of A4 was selective as peripheral blood mononuclear cells and normal human breast epithelial cells were unaffected. Furthermore, proteome analysis revealed that cancer cell lines with high levels of XIAP were particularly sensitive to the killing effect of A4. These results provide proof of concept that the ARTS binding site in XIAP is "druggable". A4 represents a novel class of dual-targeting compounds stimulating apoptosis by UPS-mediated degradation of important anti-apoptotic oncogenes.
Collapse
Affiliation(s)
- Dana Mamriev
- Cell Death and Cancer Research Laboratory, Department of Human Biology and Medical Sciences, University of Haifa, Haifa, 31905, Israel.,The Laboratory of Tumor Dormancy and Metastasis, Department of Human Biology and Medical Sciences, University of Haifa, Haifa, 31905, Israel
| | - Ruqaia Abbas
- Cell Death and Cancer Research Laboratory, Department of Human Biology and Medical Sciences, University of Haifa, Haifa, 31905, Israel
| | | | - Juliana Kagan
- Cell Death and Cancer Research Laboratory, Department of Human Biology and Medical Sciences, University of Haifa, Haifa, 31905, Israel
| | - Nir Kfir
- Cell Death and Cancer Research Laboratory, Department of Human Biology and Medical Sciences, University of Haifa, Haifa, 31905, Israel
| | | | - Keren Weidenfeld
- The Laboratory of Tumor Dormancy and Metastasis, Department of Human Biology and Medical Sciences, University of Haifa, Haifa, 31905, Israel
| | | | - Dalit Barkan
- The Laboratory of Tumor Dormancy and Metastasis, Department of Human Biology and Medical Sciences, University of Haifa, Haifa, 31905, Israel
| | - Sarit Larisch
- Cell Death and Cancer Research Laboratory, Department of Human Biology and Medical Sciences, University of Haifa, Haifa, 31905, Israel.
| |
Collapse
|
20
|
Zhang W, Keyhani NO, Zhang H, Cai K, Xia Y. Inhibitor of apoptosis-1 gene as a potential target for pest control and its involvement in immune regulation during fungal infection. PEST MANAGEMENT SCIENCE 2020; 76:1831-1840. [PMID: 31821720 DOI: 10.1002/ps.5712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/04/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Environmentally friendly insect management technologies, including RNA interference (RNAi) and entomopathogenic fungi, have attracted increasing attention as options for pest control. Here, we sought to extend RNAi-directed targeting of the inhibitor of apoptosis protein 1 (IAP1) gene to the locust, and to examine its relationship to immune responses and susceptibility to Metarhizium acridum, a locust-specific fungal pathogen. RESULTS Expression of the locust LmIAP gene was induced in the hemolymph and fat body after M. acridum infection. RNAi-directed silencing of locust LmIAP1 resulted in increased caspase 3 activity, degeneration of the gut and dose-dependent mortality. Synergistic mortality was seen in RNAi-LmIAP/fungal co-infection experiments with median survival time (MST) values decreasing from ∼ 5 days for RNAi and M. acridum treatments alone, to 2.6 days for co-treatments. Reduced hemocyte numbers and antimicrobial peptide levels were seen in co-treated locusts, with changes in gut opportunistic pathogenic bacteria seen between treatments. Enhanced fungal sporulation on co-treated insect cadavers was also compared with fungal infection alone. CONCLUSIONS Silencing of the locust LmIAP1 gene results in direct mortality and increases insect susceptibility to insect fungal pathogens, in part by decreasing immunity and altering the gut microbiome. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wei Zhang
- School of Life Sciences, Chongqing Engineering Research Center for Fungal Insecticides, Chongqing University, Chongqing, China
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Nemat O Keyhani
- School of Life Sciences, Chongqing Engineering Research Center for Fungal Insecticides, Chongqing University, Chongqing, China
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Hao Zhang
- School of Life Sciences, Chongqing Engineering Research Center for Fungal Insecticides, Chongqing University, Chongqing, China
| | - Kaiyong Cai
- Bioengineering College of Chongqing University, Chongqing, China
| | - Yuxian Xia
- School of Life Sciences, Chongqing Engineering Research Center for Fungal Insecticides, Chongqing University, Chongqing, China
| |
Collapse
|
21
|
Shu B, Zhang J, Veeran S, Zhong G. Pro-Apoptotic Function Analysis of the Reaper Homologue IBM1 in Spodoptera frugiperda. Int J Mol Sci 2020; 21:ijms21082729. [PMID: 32326478 PMCID: PMC7215429 DOI: 10.3390/ijms21082729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/26/2022] Open
Abstract
As an important type of programmed cell death, apoptosis plays a critical role in lepidopteran insects in response to various internal and external stresses. It is controlled by a network of genes such as those encoding the inhibitor of apoptosis proteins. However, there are few studies on apoptosis-related genes in Spodoptera frugiperda. In this study, an orthologue to the Drosophila reaper gene, named Sf-IBM1, was identified from S. frugiperda, and a full-length sequence was obtained by reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends PCR (RACE-PCR). The expression pattern of Sf-IBM1 was determined in different developmental stages and various tissues. Apoptotic stimuli including azadirachtin, camptothecin, and ultraviolet radiation (UV) induced the expression of Sf-IBM1 at both transcript and protein levels. Overexpression of Sf-IBM1 induced apoptosis in Sf9 cells, and the Sf-IBM1 protein was localized in mitochondria. The apoptosis induced by Sf-IBM1 could be blocked by the caspase universal inhibitor carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone (Z-VAD-FMK) and Sf-IAP1. Our results provide valuable information that should contribute to a better understanding of the molecular events that lead to apoptosis in lepidopterans.
Collapse
Affiliation(s)
- Benshui Shu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (S.V.)
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Jingjing Zhang
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (S.V.)
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Sethuraman Veeran
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (S.V.)
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Guohua Zhong
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (S.V.)
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Correspondence: ; Tel.: +86-20-8528-0308; Fax: +86-20-8528-0203
| |
Collapse
|
22
|
Apoptosis characterization in mononuclear blood leukocytes of HIV patients during dengue acute disease. Sci Rep 2020; 10:6351. [PMID: 32286360 PMCID: PMC7156518 DOI: 10.1038/s41598-020-62776-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 03/18/2020] [Indexed: 12/28/2022] Open
Abstract
Dengue virus (DENV) co-circulation in Brazil represents a challenge for treatment and vaccine development. Despite public health impact, the occurrence of coinfections with other viruses is a common event. Increased T cell activation and altered inflammatory response are found during DENV coinfection with Human Immunodeficiency Virus (HIV) impacting HIV-pathogenesis. Even with Antiretroviral therapy (ART), HIV- treated patients had chronic immune activation and lymphocyte apoptosis. However, apoptotic mechanisms have not been investigated during coinfection with DENV. Our attention was attracted to apoptotic cell markers expressions in PBMCs from DENV and DENV/HIV coinfected patients. We found CD4/CD8 ratio inversion in most coinfected patients. CD4 T and CD8 T-cell subsets from DENV and DENV/HIV groups expressed low levels of anti-apoptotic protein Bcl-2. Furthermore, CD8 CD95 double positive cells frequency expressing low levels of Bcl-2 were significantly higher in these patients. Additionally, the density of Bcl-2 on classical monocytes (CD14++CD16−) was significantly lower during DENV infection. Upregulation of pro-apoptotic proteins and anti-apoptotic proteins were found in DENV and DENV/HIV, while catalase, an antioxidant protein, was upregulated mainly in DENV/HIV coinfection. These findings provide evidence of apoptosis triggering during DENV/HIV coinfection, which may contribute to knowledge of immunological response during DENV acute infection in HIV-patients treated with ART.
Collapse
|
23
|
Qu C, Sun J, Xu Q, Lv X, Yang W, Wang F, Wang Y, Yi Q, Jia Z, Wang L, Song L. An inhibitor of apoptosis protein (EsIAP1) from Chinese mitten crab Eriocheir sinensis regulates apoptosis through inhibiting the activity of EsCaspase-3/7-1. Sci Rep 2019; 9:20421. [PMID: 31892728 PMCID: PMC6938513 DOI: 10.1038/s41598-019-56971-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/19/2019] [Indexed: 01/13/2023] Open
Abstract
Inhibitor of apoptosis proteins (IAPs) maintain the balance between cell proliferation and cell death by inhibiting caspase activities and mediating immune responses. In the present study, a homolog of IAP (designated as EsIAP1) was identified from Chinese mitten crab Eriocheir sinensis. EsIAP1 consisted of 451 amino acids containing two baculoviral IAP repeat (BIR) domains with the conserved Cx2 Cx6 Wx3 Dx5 Hx6 C motifs. EsIAP1 mRNA was expressed in various tissues and its expression level in hemocytes increased significantly (p < 0.01) at 12–48 h after lipopolysaccharide stimulation. In the hemocytes, EsIAP1 protein was mainly distributed in the cytoplasm. The hydrolytic activity of recombinant EsCaspase-3/7-1 against the substrate Ac-DEVD-pNA decreased after incubation with rEsIAP1. Moreover, rEsIAP1 could directly combine with rEsCaspase-3/7-1 in vitro. After EsIAP1 was interfered by dsRNA, the mRNA expression and the hydrolytic activity of EsCaspase-3/7-1 increased significantly, which was 2.26-fold (p < 0.05) and 1.71-fold (p < 0.05) compared to that in the dsGFP group, respectively. These results collectively demonstrated that EsIAP1 might play an important role in apoptosis pathway by regulating the activity of EsCaspase-3/7-1 in E. sinensis.
Collapse
Affiliation(s)
- Chen Qu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Qingsong Xu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Xiaojing Lv
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China.,Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China.,Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Wen Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Feifei Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Ying Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Qilin Yi
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China.,Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Zhihao Jia
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China.,Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China.,Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China. .,Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China. .,Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China. .,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
24
|
Shu B, Zhang J, Zeng J, Cui G, Zhong G. Stability of selected reference genes in Sf9 cells treated with extrinsic apoptotic agents. Sci Rep 2019; 9:14147. [PMID: 31578389 PMCID: PMC6775146 DOI: 10.1038/s41598-019-50667-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/17/2019] [Indexed: 12/16/2022] Open
Abstract
As a tightly controlled cell death process, apoptosis eliminates unwanted cells and plays a vital role in multicellular organisms. Previous study have demonstrated that apoptosis occurred in Spodoptera frugiperda cultured Sf9 cells, which triggered by diverse apoptotic stimuli, including azadirachtin, camptothecin and ultraviolet. Due to its simplicity, high sensitivity and reliable specificity, RT-qPCR has been used widespread for analyzing expression levels of target genes. However, the selection of reference genes influences the accuracy of results profoundly. In this study, eight genes were selected for analyses of their suitability as references for normalizing RT-PCR data in Sf9 cells treated with apoptotic agents. Five algorithms, including NormFinder, BestKeeper, Delta Ct method, geNorm, and RefFinder, were used for stability ranking. Based on comprehensively analysis, the expression stability of selected genes varied in cells with different apoptotic stimuli. The best choices for cells under different apoptosis conditions were listed: EF2 and EF1α for cells treated with azadirachtin; RPL13 and RPL3 for cells treated with camptothecin; EF1α and β-1-TUB for cells irradiated under ultraviolet; and EF1α and EF2 for combinational analyses of samples. Our results not only facilitate a more accurate normalization for RT-qPCR data, but also provide the reliable assurance for further studies of apoptotic mechanisms under different stimulus in Sf9 cells.
Collapse
Affiliation(s)
- Benshui Shu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China.,Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Jingjing Zhang
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China.,Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Jie Zeng
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China.,Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Gaofeng Cui
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China.,Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Guohua Zhong
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China. .,Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
25
|
Reiff T, Antonello ZA, Ballesta-Illán E, Mira L, Sala S, Navarro M, Martinez LM, Dominguez M. Notch and EGFR regulate apoptosis in progenitor cells to ensure gut homeostasis in Drosophila. EMBO J 2019; 38:e101346. [PMID: 31566767 DOI: 10.15252/embj.2018101346] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 07/20/2019] [Accepted: 08/01/2019] [Indexed: 12/25/2022] Open
Abstract
The regenerative activity of adult stem cells carries a risk of cancer, particularly in highly renewable tissues. Members of the family of inhibitor of apoptosis proteins (IAPs) inhibit caspases and cell death, and are often deregulated in adult cancers; however, their roles in normal adult tissue homeostasis are unclear. Here, we show that regulation of the number of enterocyte-committed progenitor (enteroblast) cells in the adult Drosophila involves a caspase-mediated physiological apoptosis, which adaptively eliminates excess enteroblast cells produced by intestinal stem cells (ISCs) and, when blocked, can also lead to tumorigenesis. Importantly, we found that Diap1 is expressed by enteroblast cells and that loss and gain of Diap1 led to changes in enteroblast numbers. We also found that antagonistic interplay between Notch and EGFR signalling governs enteroblast life/death decisions via the Klumpfuss/WT1 and Lozenge/RUNX transcription regulators, which also regulate enteroblast differentiation and cell fate plasticity. These data provide new insights into how caspases drive adult tissue renewal and protect against the formation of tumours.
Collapse
Affiliation(s)
- Tobias Reiff
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Alicante, Spain
| | - Zeus A Antonello
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Alicante, Spain
| | - Esther Ballesta-Illán
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Alicante, Spain
| | - Laura Mira
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Alicante, Spain
| | - Salvador Sala
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Alicante, Spain
| | - Maria Navarro
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Alicante, Spain
| | - Luis M Martinez
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Alicante, Spain
| | - Maria Dominguez
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Alicante, Spain
| |
Collapse
|
26
|
Jin Y, Lu X, Wang M, Zhao X, Xue L. X-linked inhibitor of apoptosis protein accelerates migration by inducing epithelial-mesenchymal transition through TGF-β signaling pathway in esophageal cancer cells. Cell Biosci 2019; 9:76. [PMID: 31548877 PMCID: PMC6749643 DOI: 10.1186/s13578-019-0338-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 09/09/2019] [Indexed: 01/06/2023] Open
Abstract
Background The prognosis of esophageal cancer is still dismal because of its high probability of metastasis that is likely related to the cellular process of epithelial–mesenchymal transition (EMT). Recent studies have shown a novel role of X-linked inhibitor of apoptosis protein (XIAP) in regulating the migration process of cancer cells and, therefore, linking to progression and poor prognosis of cancer. Methods The expression of XIAP in esophageal squamous cell cancer (ESCC) tissues was determined by immunohistochemistry assay. Cell migration was analyzed by wound healing assay and Transwell assay. The expression of EMT markers (E-cadherin, N-cadherin and Vimentin) was revealed by immunofluorescence assay. Quantitative real‑time PCR analysis and Western blot analysis were used to detect the expression of XIAP and EMT markers as well as transforming growth factor-β (TGF-β) at mRNA and protein level, respectively. Results We found that the expression of XIAP closely correlated to the probability of lymphatic metastasis in patients and that ESCC patients with the high XIAP expression were associated with worse overall survival (OS). Univariate and multivariate analysis also revealed XIAP as an independent prognostic factor for overall survival in ESCC patients. In both EC9706 and TE13 cell lines, knockdown of XIAP decreased the migration of cancer cells by inhibiting EMT process through regulating the TGF-β signaling pathway, pinpointing a regulatory role of XIAP in migratory process upon TGF-β activation. Conclusions Taken together, our results suggest XIAP as a important prognostic and regulative factor in ESCC patients. XIAP may promote migration of esophageal cancer cells through the activation of TGF-β mediated EMT.
Collapse
Affiliation(s)
- Yuxiang Jin
- Department of Thoracic Surgery, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003 People's Republic of China
| | - Xinye Lu
- Department of Thoracic Surgery, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003 People's Republic of China
| | - Mingdong Wang
- Department of Thoracic Surgery, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003 People's Republic of China
| | - Xuewei Zhao
- Department of Thoracic Surgery, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003 People's Republic of China
| | - Lei Xue
- Department of Thoracic Surgery, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003 People's Republic of China
| |
Collapse
|
27
|
de Giffoni de Carvalho JT, da Silva Baldivia D, Leite DF, de Araújo LCA, de Toledo Espindola PP, Antunes KA, Rocha PS, de Picoli Souza K, dos Santos EL. Medicinal Plants from Brazilian Cerrado: Antioxidant and Anticancer Potential and Protection against Chemotherapy Toxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3685264. [PMID: 31534620 PMCID: PMC6732650 DOI: 10.1155/2019/3685264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/16/2019] [Accepted: 07/15/2019] [Indexed: 12/24/2022]
Abstract
The use of natural antioxidants in cancer therapy has increased: first, due to the potential of natural antioxidants to kill tumour cells and second, because of their capacity to protect healthy cells from the damage caused by chemotherapy. This review article discusses the antioxidant properties of extracts obtained from medicinal plants from the Brazilian Cerrado and the cell death profile induced by each of these extracts in malignant cells. Next, we describe the capacity of other medicinal plants from the Cerrado to protect against chemotherapy-induced cell toxicity. Finally, we focus on recent insights into the cell death profile induced by extracts from Cerrado plants and perspectives for future therapeutic approaches.
Collapse
Affiliation(s)
| | - Débora da Silva Baldivia
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados, Dourados, Brazil
| | - Daniel Ferreira Leite
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados, Dourados, Brazil
| | - Laura Costa Alves de Araújo
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados, Dourados, Brazil
| | | | - Katia Avila Antunes
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados, Dourados, Brazil
| | - Paola Santos Rocha
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados, Dourados, Brazil
| | - Kely de Picoli Souza
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados, Dourados, Brazil
| | - Edson Lucas dos Santos
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados, Dourados, Brazil
| |
Collapse
|
28
|
Martín-Folgar R, Martínez-Guitarte JL. Effects of single and mixture exposure of cadmium and copper in apoptosis and immune related genes at transcriptional level on the midge Chironomus riparius Meigen (Diptera, Chironomidae). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 677:590-598. [PMID: 31071664 DOI: 10.1016/j.scitotenv.2019.04.364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
Metals and heavy metals are natural contaminants with an increasing presence in aquatic ecosystems as a result of human activities. Although they are mixed in the water, research is usually focused on analyzing them in isolation, so there is a lack of knowledge about their combined effects. The aim of this work was to assess the damage produced by mixtures of cadmium and copper, two frequent metals used in industry, in the harlequin midge Chironomus riparius (Diptera). The effects of acute doses of cadmium and copper were evaluated in fourth instar larvae by analyzing the mRNA levels of six genes related to apoptosis (DRONC, IAP1), immune system (PO1, Defensin), stress (Gp93), and copper homeostasis (Ctr1). DRONC, Ctr1, and IAP1 transcripts are described here for first time in this species. Individual fourth instar larvae were submitted to 10 μM, 1 μM and 0.1 μM of CdCl2 or CuCl2, and mixture. The employed individuals came from different egg masses. Real-time PCR analysis showed a complex pattern of alterations in transcriptional activity for two genes, DRONC and Gp93, while the rest of them did not show any statistically significant differences. The effector caspase DRONC showed upregulation with the highest concentration tested of the mixture. In case of gp93, chaperone involved in regulation of immune response, differences in expression levels were found with 1 and 10 μM Cu and 0.1 and 10 μM of mixtures, compared to control samples. These results suggest that mixtures affect the transcriptional activity differently and produce changes in apoptosis and stress processes, although it is also possible that Gp93 alteration could be related to the immune system since it is homologous to human protein Gp96, which has been related with Toll-like receptors. In conclusion, cadmium and copper mixtures can affect the population by affecting the ability of larvae to respond to the infection and the apoptosis, an important process in the metamorphosis of insects.
Collapse
Affiliation(s)
- Raquel Martín-Folgar
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040 Madrid, Spain.
| | - José-Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040 Madrid, Spain
| |
Collapse
|
29
|
Peilin W, Songsong T, Chengyu Z, Zhi C, Chunhui M, Yinxian Y, Lei Z, Min M, Zongyi W, Mengkai Y, Jing X, Tao Z, Zhuoying W, Fei Y, Chengqing Y. Directed elimination of senescent cells attenuates development of osteoarthritis by inhibition of c-IAP and XIAP. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2618-2632. [PMID: 31251987 DOI: 10.1016/j.bbadis.2019.05.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/28/2019] [Accepted: 05/27/2019] [Indexed: 01/02/2023]
Abstract
Aging drives the accumulation of senescent cells (SnCs) by secreting factors that cause the senescence-associated secretory phenotype (SASP), including stem cells in the bone marrow, which contribute to aging-related bone degradation. Osteoarthritis (OA) is a serious chronic injury disease, and increasing age is a major risk factor. The accumulation of SnCs may accelerate the development of OA, and the accumulation of SnCs may benefit from its resistance to apoptotic stimuli. Therefore, local elimination of SnCs could be a promising treatment for OA. Apoptosis inhibitor protein (IAP) is an important antiapoptotic protein in vivo. AT-406 is a small molecule inhibitor of the IAP genes and also regulates the transcription of several genes. Here, we show that SnCs upregulate the antiapoptotic proteins c-IAP1, c-IAP2 and XIAP.The combined inhibition of c-IAP1, c-IAP2 and XIAP using siRNA or AT-406 specifically induce the apoptosis of SnCs.In addition, XIAP and STX17 bind to each other to regulate the fusion of autophagosomes and lysosomes in SnCs, which in turn, affects the fate of SnCs. It is worth noting that the clearance of SnCs attenuated the secretion of SASP and created a proregenerative environment. Most importantly, local clearance of SnCs significantly attenuated the progression of osteoarthritis in rats without significant toxic effects. Thus, local elimination of SnCs may be a potential treatment for OA. This is the first report of inhibition of IAPs for clearing SnCs and suggests that eradication of SnCs may be a new strategy for the treatment of age-related diseases.
Collapse
Affiliation(s)
- Wang Peilin
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institute, Shanghai, China
| | - Teng Songsong
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuang Chengyu
- Department of Orthopaedics, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cui Zhi
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institute, Shanghai, China
| | - Ma Chunhui
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Yinxian
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhou Lei
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institute, Shanghai, China
| | - Mao Min
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institute, Shanghai, China
| | - Wang Zongyi
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institute, Shanghai, China.
| | - Yang Mengkai
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institute, Shanghai, China
| | - Xu Jing
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institute, Shanghai, China
| | - Zhang Tao
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institute, Shanghai, China.
| | - Wang Zhuoying
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institute, Shanghai, China
| | - Yin Fei
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institute, Shanghai, China
| | - Yi Chengqing
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
30
|
Boddu P, Carter BZ, Verstovsek S, Pemmaraju N. SMACmimetics as potential cancer therapeutics in myeloid malignancies. Br J Haematol 2019; 185:219-231. [DOI: 10.1111/bjh.15829] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Prajwal Boddu
- Department of Hematology and Oncology Yale University School of Medicine New Haven CTUSA
| | - Bing Z. Carter
- Department of Leukemia University of Texas MD Anderson Cancer Center Houston TX USA
| | - Srdan Verstovsek
- Department of Leukemia University of Texas MD Anderson Cancer Center Houston TX USA
| | - Naveen Pemmaraju
- Department of Leukemia University of Texas MD Anderson Cancer Center Houston TX USA
| |
Collapse
|
31
|
Castelli G, Pelosi E, Testa U. Emerging Therapies for Acute Myelogenus Leukemia Patients Targeting Apoptosis and Mitochondrial Metabolism. Cancers (Basel) 2019; 11:E260. [PMID: 30813354 PMCID: PMC6406361 DOI: 10.3390/cancers11020260] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/14/2019] [Indexed: 02/06/2023] Open
Abstract
Acute Myelogenous Leukemia (AML) is a malignant disease of the hematopoietic cells, characterized by impaired differentiation and uncontrolled clonal expansion of myeloid progenitors/precursors, resulting in bone marrow failure and impaired normal hematopoiesis. AML comprises a heterogeneous group of malignancies, characterized by a combination of different somatic genetic abnormalities, some of which act as events driving leukemic development. Studies carried out in the last years have shown that AML cells invariably have abnormalities in one or more apoptotic pathways and have identified some components of the apoptotic pathway that can be targeted by specific drugs. Clinical results deriving from studies using B-cell lymphoma 2 (BCL-2) inhibitors in combination with standard AML agents, such as azacytidine, decitabine, low-dose cytarabine, provided promising results and strongly support the use of these agents in the treatment of AML patients, particularly of elderly patients. TNF-related apoptosis-inducing ligand (TRAIL) and its receptors are frequently deregulated in AML patients and their targeting may represent a promising strategy for development of new treatments. Altered mitochondrial metabolism is a common feature of AML cells, as supported through the discovery of mutations in the isocitrate dehydrogenase gene and in mitochondrial electron transport chain and of numerous abnormalities of oxidative metabolism existing in AML subgroups. Overall, these observations strongly support the view that the targeting of mitochondrial apoptotic or metabolic machinery is an appealing new therapeutic perspective in AML.
Collapse
Affiliation(s)
- Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
32
|
Cosolo A, Jaiswal J, Csordás G, Grass I, Uhlirova M, Classen AK. JNK-dependent cell cycle stalling in G2 promotes survival and senescence-like phenotypes in tissue stress. eLife 2019; 8:41036. [PMID: 30735120 PMCID: PMC6389326 DOI: 10.7554/elife.41036] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 02/06/2019] [Indexed: 01/10/2023] Open
Abstract
The restoration of homeostasis after tissue damage relies on proper spatial-temporal control of damage-induced apoptosis and compensatory proliferation. In Drosophila imaginal discs these processes are coordinated by the stress response pathway JNK. We demonstrate that JNK signaling induces a dose-dependent extension of G2 in tissue damage and tumors, resulting in either transient stalling or a prolonged but reversible cell cycle arrest. G2-stalling is mediated by downregulation of the G2/M-specific phosphatase String(Stg)/Cdc25. Ectopic expression of stg is sufficient to suppress G2-stalling and reveals roles for stalling in survival, proliferation and paracrine signaling. G2-stalling protects cells from JNK-induced apoptosis, but under chronic conditions, reduces proliferative potential of JNK-signaling cells while promoting non-autonomous proliferation. Thus, transient cell cycle stalling in G2 has key roles in wound healing but becomes detrimental upon chronic JNK overstimulation, with important implications for chronic wound healing pathologies or tumorigenic transformation.
Collapse
Affiliation(s)
- Andrea Cosolo
- Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany.,Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Janhvi Jaiswal
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Gábor Csordás
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Institute for Genetics, University of Cologne, Cologne, Germany
| | - Isabelle Grass
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany.,Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany.,Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Mirka Uhlirova
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Institute for Genetics, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Anne-Kathrin Classen
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany.,Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany.,Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| |
Collapse
|
33
|
Caspases orchestrate microglia instrumental functions. Prog Neurobiol 2018; 171:50-71. [DOI: 10.1016/j.pneurobio.2018.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 09/21/2018] [Accepted: 09/29/2018] [Indexed: 12/16/2022]
|
34
|
Rosner A, Kravchenko O, Rinkevich B. IAP genes partake weighty roles in the astogeny and whole body regeneration in the colonial urochordate Botryllus schlosseri. Dev Biol 2018; 448:320-341. [PMID: 30385275 DOI: 10.1016/j.ydbio.2018.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/29/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022]
Abstract
Inhibitors of Apoptosis Protein (IAP) genes participate in processes like apoptosis, proliferation, innate immunity, inflammation, cell motility, differentiation and in malignancies. Here we reveal 25 IAP genes in the tunicate Botryllus schlosseri's genome and their functions in two developmental biology phenomena, a new mode of whole body regeneration (WBR) induced by budectomy, and blastogenesis, the four-staged cycles of botryllid ascidian astogeny. IAP genes that were specifically upregulated during these developmental phenomena were identified, and protein expression patterns of one of these genes, IAP28, were followed. Most of the IAP genes upregulation recorded at blastogenetic stages C/D was in concert with the upregulation at 100 μM H2O2 apoptotic-induced treatment and in parallel to expressions of AIF1, Bax, Mcl1, caspase 2 and two orthologues of caspase 7. Wnt agonist altered the takeover duration along with reduced IAP expressions, and displacement of IAP28+ phagocytes. WBR was initiated solely at blastogenetic stage D, where zooidal absorption was attenuated and regeneration centers were formed either from remains of partially absorbed zooids or from deformed ampullae. Subsequently, bud-bearing zooids developed, in concert with a massive IAP28-dependent phagocytic wave that eliminated the old zooids, then proceeded with the establishment of morphologically normal-looking colonies. IAP4, IAP14 and IAP28 were also involved in WBR, in conjunction with the expression of the pro-survival PI3K-Akt pathway. IAPs function deregulation by Smac mimetics resulted in severe morphological damages, attenuation in bud growth and differentiation, and in destabilization of colonial coordination. Longtime knockdown of IAP functions prior to the budectomy, resulted in colonial death.
Collapse
Affiliation(s)
- Amalia Rosner
- Israel Oceanographic&Limnological Research Institute, Tel Shikmona, P.O.B. 8030, Haifa 31080, Israel.
| | - Olha Kravchenko
- Israel Oceanographic&Limnological Research Institute, Tel Shikmona, P.O.B. 8030, Haifa 31080, Israel; National University of Life and Environmental Sciences of Ukraine, Heroiv Oborony, Str 17, building 2, of 45, Kyiv 03041, Ukraine
| | - Baruch Rinkevich
- Israel Oceanographic&Limnological Research Institute, Tel Shikmona, P.O.B. 8030, Haifa 31080, Israel
| |
Collapse
|
35
|
Harshan S, Dey P, Ragunathan S. Effects of rheumatoid arthritis associated transcriptional changes on osteoclast differentiation network in the synovium. PeerJ 2018; 6:e5743. [PMID: 30324023 PMCID: PMC6186409 DOI: 10.7717/peerj.5743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/12/2018] [Indexed: 12/15/2022] Open
Abstract
Background Osteoclast differentiation in the inflamed synovium of rheumatoid arthritis (RA) affected joints leads to the formation of bone lesions. Reconstruction and analysis of protein interaction networks underlying specific disease phenotypes are essential for designing therapeutic interventions. In this study, we have created a network that captures signal flow leading to osteoclast differentiation. Based on transcriptome analysis, we have indicated the potential mechanisms responsible for the phenotype in the RA affected synovium. Method We collected information on gene expression, pathways and protein interactions related to RA from literature and databases namely Gene Expression Omnibus, Kyoto Encyclopedia of Genes and Genomes pathway and STRING. Based on these information, we created a network for the differentiation of osteoclasts. We identified the differentially regulated network genes and reported the signaling that are responsible for the process in the RA affected synovium. Result Our network reveals the mechanisms underlying the activation of the neutrophil cytosolic factor complex in connection to osteoclastogenesis in RA. Additionally, the study reports the predominance of the canonical pathway of NF-κB activation in the diseased synovium. The network also confirms that the upregulation of T cell receptor signaling and downregulation of transforming growth factor beta signaling pathway favor osteoclastogenesis in RA. To the best of our knowledge, this is the first comprehensive protein–protein interaction network describing RA driven osteoclastogenesis in the synovium. Discussion This study provides information that can be used to build models of the signal flow involved in the process of osteoclast differentiation. The models can further be used to design therapies to ameliorate bone destruction in the RA affected joints.
Collapse
Affiliation(s)
- Shilpa Harshan
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India
| | - Poulami Dey
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India.,Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Srivatsan Ragunathan
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India
| |
Collapse
|
36
|
Volin M, Zohar-Fux M, Gonen O, Porat-Kuperstein L, Toledano H. microRNAs selectively protect hub cells of the germline stem cell niche from apoptosis. J Cell Biol 2018; 217:3829-3838. [PMID: 30093492 PMCID: PMC6219711 DOI: 10.1083/jcb.201711098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/10/2017] [Accepted: 07/25/2018] [Indexed: 12/19/2022] Open
Abstract
Genotoxic stress such as irradiation causes a temporary halt in tissue regeneration. The ability to regain regeneration depends on the type of cells that survived the assault. Previous studies showed that this propensity is usually held by the tissue-specific stem cells. However, stem cells cannot maintain their unique properties without the support of their surrounding niche cells. In this study, we show that exposure of Drosophila melanogaster to extremely high levels of irradiation temporarily arrests spermatogenesis and kills half of the stem cells. In marked contrast, the hub cells that constitute a major component of the niche remain completely intact. We further show that this atypical resistance to cell death relies on the expression of certain antiapoptotic microRNAs (miRNAs) that are selectively expressed in the hub and keep the cells inert to apoptotic stress signals. We propose that at the tissue level, protection of a specific group of niche cells from apoptosis underlies ongoing stem cell turnover and tissue regeneration.
Collapse
Affiliation(s)
- Marina Volin
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Maayan Zohar-Fux
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Oren Gonen
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Lilach Porat-Kuperstein
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Hila Toledano
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
37
|
Edison N, Curtz Y, Paland N, Mamriev D, Chorubczyk N, Haviv-Reingewertz T, Kfir N, Morgenstern D, Kupervaser M, Kagan J, Kim HT, Larisch S. Degradation of Bcl-2 by XIAP and ARTS Promotes Apoptosis. Cell Rep 2018; 21:442-454. [PMID: 29020630 DOI: 10.1016/j.celrep.2017.09.052] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/17/2016] [Accepted: 09/15/2017] [Indexed: 01/21/2023] Open
Abstract
We describe a mechanism by which the anti-apoptotic B cell lymphoma 2 (Bcl-2) protein is downregulated to induce apoptosis. ARTS (Sept4_i2) is a tumor suppressor protein that promotes cell death through specifically antagonizing XIAP (X-linked inhibitor of apoptosis). ARTS and Bcl-2 reside at the outer mitochondrial membrane in living cells. Upon apoptotic induction, ARTS brings XIAP and Bcl-2 into a ternary complex, allowing XIAP to promote ubiquitylation and degradation of Bcl-2. ARTS binding to Bcl-2 involves the BH3 domain of Bcl-2. Lysine 17 in Bcl-2 serves as the main acceptor for ubiquitylation, and a Bcl-2 K17A mutant has increased stability and is more potent in protection against apoptosis. Bcl-2 ubiquitylation is reduced in both XIAP- and Sept4/ARTS-deficient MEFs, demonstrating that XIAP serves as an E3 ligase for Bcl-2 and that ARTS is essential for this process. Collectively, these results suggest a distinct model for the regulation of Bcl-2 by ARTS-mediated degradation.
Collapse
Affiliation(s)
- Natalia Edison
- Cell Death and Cancer Research Laboratory, Department of Biology, University of Haifa, Haifa 31905, Israel
| | - Yael Curtz
- Cell Death and Cancer Research Laboratory, Department of Biology, University of Haifa, Haifa 31905, Israel
| | - Nicole Paland
- Cell Death and Cancer Research Laboratory, Department of Biology, University of Haifa, Haifa 31905, Israel
| | - Dana Mamriev
- Cell Death and Cancer Research Laboratory, Department of Biology, University of Haifa, Haifa 31905, Israel
| | - Nicolas Chorubczyk
- Cell Death and Cancer Research Laboratory, Department of Biology, University of Haifa, Haifa 31905, Israel
| | - Tali Haviv-Reingewertz
- Cell Death and Cancer Research Laboratory, Department of Biology, University of Haifa, Haifa 31905, Israel
| | - Nir Kfir
- Cell Death and Cancer Research Laboratory, Department of Biology, University of Haifa, Haifa 31905, Israel
| | - David Morgenstern
- De Botton Institute for Protein Profiling, Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Meital Kupervaser
- De Botton Institute for Protein Profiling, Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Juliana Kagan
- Cell Death and Cancer Research Laboratory, Department of Biology, University of Haifa, Haifa 31905, Israel
| | - Hyoung Tae Kim
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Sarit Larisch
- Cell Death and Cancer Research Laboratory, Department of Biology, University of Haifa, Haifa 31905, Israel.
| |
Collapse
|
38
|
Talreja D, Cashman SM, Dasari B, Kumar B, Kumar-Singh R. G-quartet oligonucleotide mediated delivery of functional X-linked inhibitor of apoptosis protein into retinal cells following intravitreal injection. Exp Eye Res 2018; 175:20-31. [PMID: 29864441 DOI: 10.1016/j.exer.2018.05.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/31/2018] [Accepted: 05/31/2018] [Indexed: 12/12/2022]
Abstract
There is currently no efficient method available for the delivery of full length functional proteins into the cytoplasm of retinal cells in vivo. Historically, the most successful approach for the treatment of retinal diseases has been intravitreal injection of antibodies or recombinant proteins, but this approach is not yet utilized for the delivery of proteins that require intracellular access for a therapeutic effect. Here we describe a platform for the delivery of functional proteins into ganglion cells, photoreceptors and retinal pigment epithelium via intravitreal injection. A nucleolin binding aptamer, AS1411, was biotinylated and complexed with traptavidin and utilized as a platform for the delivery of GFP or X-linked inhibitor of apoptosis (XIAP) proteins by intravitreal injection in BALB/c mice. Retinal sections were analyzed for uptake of proteins in the retina. Apoptosis was induced by intravitreal injection of N-methyl-D-aspartate (NMDA). Retinas were harvested for analysis of TUNEL and caspase 3/7 activity. Intravitreal injection of AS1411-directed GFP or XIAP complexes enabled delivery of these proteins into ganglion cells, photoreceptors and retinal pigment epithelium in vivo. AS1411-XIAP complexes conferred significant protection to cells in the outer and inner nuclear layers following NMDA induced apoptosis. A concomitant decrease in activity of Caspase 3/7 was observed in eyes injected with the AS1411-XIAP complex. In conclusion, AS1411 can be used as a platform for the delivery of therapeutic proteins into retinal cells. This approach can potentially be utilized to introduce a large variety of therapeutically relevant proteins that are previously well characterized to maintain the structural integrity and function of retina, thus, preventing vision loss due to ocular trauma or inherited retinal degeneration.
Collapse
Affiliation(s)
- Deepa Talreja
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Siobhan M Cashman
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Bhanu Dasari
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Binit Kumar
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Rajendra Kumar-Singh
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
39
|
Shu B, Zhang J, Cui G, Sun R, Yi X, Zhong G. Azadirachtin Affects the Growth of Spodoptera litura Fabricius by Inducing Apoptosis in Larval Midgut. Front Physiol 2018. [PMID: 29535638 PMCID: PMC5835231 DOI: 10.3389/fphys.2018.00137] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Azadirachtin, the environmentally friendly botanical pesticide, has been used as an antifeedant and pest growth regulator in integrated pest management for decades. It has shown strong biological activity against Spodoptera litura, but the mechanism of toxicity remains unclear. The present study showed that azadirachtin inhibited the growth of S. litura larvae, which was resulted by structure destroy and size inhibition of the midgut. Digital gene expression (DGE) analysis of midgut suggested that azadirachtin regulated the transcriptional level of multiple unigenes involved in mitogen-activated protein kinase (MAPK) and calcium apoptotic signaling pathways. Simultaneously, the expression patterns of some differentially expressed unigenes were verified by quantitative real time-PCR (qRT-PCR). In addition, the enhanced terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) staining, the increased expression of caspase family members and apoptosis-binding motif 1 (IBM1) on both gene and protein level and the release of cytochrome c from mitochondria to cytoplasm were induced in midgut after azadirachtin treatment. These results demonstrated that azadirachtin induced structural alteration in S. litura larval midgut by apoptosis activation. These alterations may affect the digestion and absorption of nutrients and eventually lead to the growth inhibition of larvae.
Collapse
Affiliation(s)
- Benshui Shu
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Jingjing Zhang
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Gaofeng Cui
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Ranran Sun
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Xin Yi
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Guohua Zhong
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| |
Collapse
|
40
|
AP-1 confers resistance to anti-cancer therapy by activating XIAP. Oncotarget 2018; 9:14124-14137. [PMID: 29581832 PMCID: PMC5865658 DOI: 10.18632/oncotarget.23897] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/30/2017] [Indexed: 02/06/2023] Open
Abstract
The underlying cause of treatment failure in many cancer patients is intrinsic and acquired resistance to chemotherapy. Recently, histone deacetylase (HDAC) inhibitors have developed into a promising cancer treatment. However, resistance mechanism induced by HDAC inhibitors remains largely unknown. Here we report that a HDAC inhibitor, JNJ-2648158 induced transcription of XIAP by activating AP-1 expression, which conferring resistance to chemotherapeutics. Our results showed that high expression of c-Fos caused by HDAC inhibitor promoted AP-1 formation during acquired resistance towards chemo-drugs, indicating an extremely poor clinical outcome in breast cancers and liver cancers. Our study reveals a novel regulatory mechanism towards chemo-drug resistance, and suggests that XIAP may serve as a potential therapeutic target in those chemo-resistant cancer cells.
Collapse
|
41
|
Tango7 regulates cortical activity of caspases during reaper-triggered changes in tissue elasticity. Nat Commun 2017; 8:603. [PMID: 28928435 PMCID: PMC5605750 DOI: 10.1038/s41467-017-00693-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 07/20/2017] [Indexed: 11/08/2022] Open
Abstract
Caspases perform critical functions in both living and dying cells; however, how caspases perform physiological functions without killing the cell remains unclear. Here we identify a novel physiological function of caspases at the cortex of Drosophila salivary glands. In living glands, activation of the initiator caspase dronc triggers cortical F-actin dismantling, enabling the glands to stretch as they accumulate secreted products in the lumen. We demonstrate that tango7, not the canonical Apaf-1-adaptor dark, regulates dronc activity at the cortex; in contrast, dark is required for cytoplasmic activity of dronc during salivary gland death. Therefore, tango7 and dark define distinct subcellular domains of caspase activity. Furthermore, tango7-dependent cortical dronc activity is initiated by a sublethal pulse of the inhibitor of apoptosis protein (IAP) antagonist reaper. Our results support a model in which biological outcomes of caspase activation are regulated by differential amplification of IAP antagonists, unique caspase adaptor proteins, and mutually exclusive subcellular domains of caspase activity. Caspases are known for their role in cell death, but they can also participate in other physiological functions without killing the cells. Here the authors show that unique caspase adaptor proteins can regulate caspase activity within mutually-exclusive and independently regulated subcellular domains.
Collapse
|
42
|
Caspase-dependent non-apoptotic processes in development. Cell Death Differ 2017; 24:1422-1430. [PMID: 28524858 PMCID: PMC5520453 DOI: 10.1038/cdd.2017.36] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 12/16/2022] Open
Abstract
Caspases are at the core of executing apoptosis by orchestrating cellular destruction with proteolytic cascades. Caspase-mediated proteolysis also controls diverse nonlethal cellular activities such as proliferation, differentiation, cell fate decision, and cytoskeletal reorganization. During the last decade or so, genetic studies of Drosophila have contributed to our understanding of the in vivo mechanism of the non-apoptotic cellular responses in developmental contexts. Furthermore, recent studies using C. elegans suggest that apoptotic signaling may play unexpected roles, which influence ageing and normal development at the organism level. In this review, we describe how the caspase activity is elaborately controlled during vital cellular processes at the level of subcellular localization, the duration and timing to avoid full apoptotic consequences, and also discuss the novel roles of non-apoptotic caspase signaling in adult homeostasis and physiology.
Collapse
|