1
|
Sekula M, Tworzydlo W, Bilinski SM. Balbiani body of basal insects is potentially involved in multiplication and selective elimination of mitochondria. Sci Rep 2024; 14:8263. [PMID: 38594333 PMCID: PMC11004008 DOI: 10.1038/s41598-024-58997-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/05/2024] [Indexed: 04/11/2024] Open
Abstract
Oocytes of both vertebrates and invertebrates often contain an intricate organelle assemblage, termed the Balbiani body (Bb). It has previously been suggested that this assemblage is involved in the delivery of organelles and macromolecules to the germ plasm, formation of oocyte reserve materials, and transfer of mitochondria to the next generation. To gain further insight into the function of the Bb, we performed a series of analyses and experiments, including computer-aided 3-dimensional reconstructions, detection of DNA (mtDNA) synthesis as well as immunolocalization studies. We showed that in orthopteran Meconema meridionale, the Bb comprises a network of mitochondria and perinuclear nuage aggregations. As oogenesis progresses, the network expands filling almost entire ooplasm, then partitions into several smaller entities, termed micro-networks, and ultimately into individual mitochondria. As in somatic cells, this process involves microfilaments and elements of endoplasmic reticulum. We showed also that at least some of the individual mitochondria are surrounded by phagophores and eliminated via mitophagy. These findings support the idea that the Bb is implicated in the multiplication and selective elimination of (defective) mitochondria and therefore may participate in the transfer of undamaged (healthy) mitochondria to the next generation.
Collapse
Affiliation(s)
- Malgorzata Sekula
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Kraków, Poland.
| | - Waclaw Tworzydlo
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Kraków, Poland
| | - Szczepan M Bilinski
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Kraków, Poland.
| |
Collapse
|
2
|
O’Connell LC, Johnson V, Hutton AK, Otis JP, Murthy AC, Liang MC, Wang SH, Fawzi NL, Mowry KL. Intrinsically disordered regions and RNA binding domains contribute to protein enrichment in biomolecular condensates in Xenopus oocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566489. [PMID: 37986933 PMCID: PMC10659413 DOI: 10.1101/2023.11.10.566489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Proteins containing both intrinsically disordered regions (IDRs) and RNA binding domains (RBDs) can phase separate in vitro, forming bodies similar to cellular biomolecular condensates. However, how IDR and RBD domains contribute to in vivo recruitment of proteins to biomolecular condensates remains poorly understood. Here, we analyzed the roles of IDRs and RBDs in L-bodies, biomolecular condensates present in Xenopus oocytes. We show that a cytoplasmic isoform of hnRNPAB, which contains two RBDs and an IDR, is highly enriched in L-bodies. While both of these domains contribute to hnRNPAB self-association and phase separation in vitro and mediate enrichment into L-bodies in oocytes, neither the RBDs nor the IDR replicate the localization of full-length hnRNPAB. Our results suggest a model where the additive effects of the IDR and RBDs regulate hnRNPAB partitioning into L-bodies. This model likely has widespread applications as proteins containing RBD and IDR domains are common biomolecular condensate residents.
Collapse
Affiliation(s)
- Liam C. O’Connell
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University Providence, RI 02912, USA
| | - Victoria Johnson
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University Providence, RI 02912, USA
| | - Anika K. Hutton
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University Providence, RI 02912, USA
| | - Jessica P. Otis
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University Providence, RI 02912, USA
| | - Anastasia C. Murthy
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University Providence, RI 02912, USA
| | - Mark C. Liang
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University Providence, RI 02912, USA
| | - Szu-Huan Wang
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University Providence, RI 02912, USA
| | - Nicolas L. Fawzi
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University Providence, RI 02912, USA
| | - Kimberly L. Mowry
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University Providence, RI 02912, USA
| |
Collapse
|
3
|
Otis JP, Mowry KL. Hitting the mark: Localization of mRNA and biomolecular condensates in health and disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1807. [PMID: 37393916 PMCID: PMC10758526 DOI: 10.1002/wrna.1807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023]
Abstract
Subcellular mRNA localization is critical to a multitude of biological processes such as development of cellular polarity, embryogenesis, tissue differentiation, protein complex formation, cell migration, and rapid responses to environmental stimuli and synaptic depolarization. Our understanding of the mechanisms of mRNA localization must now be revised to include formation and trafficking of biomolecular condensates, as several biomolecular condensates that transport and localize mRNA have recently been discovered. Disruptions in mRNA localization can have catastrophic effects on developmental processes and biomolecular condensate biology and have been shown to contribute to diverse diseases. A fundamental understanding of mRNA localization is essential to understanding how aberrations in this biology contribute the etiology of numerous cancers though support of cancer cell migration and biomolecular condensate dysregulation, as well as many neurodegenerative diseases, through misregulation of mRNA localization and biomolecular condensate biology. This article is categorized under: RNA Export and Localization > RNA Localization RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Jessica P. Otis
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States, 02912
| | - Kimberly L. Mowry
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States, 02912
| |
Collapse
|
4
|
Niu H, An X, Wang X, Yang M, Cheng F, Lei A, Luo J. Dynamic role of Scd1 gene during mouse oocyte growth and maturation. Int J Biol Macromol 2023; 247:125307. [PMID: 37315672 DOI: 10.1016/j.ijbiomac.2023.125307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 05/07/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
Mammalian reproductive ability is regulated by many factors, among which the fatty acid metabolism network provides energy for oocyte growth and primordial follicle formation during early mouse oogenesis. But the mechanism behind that is still unknown. Stearoyl-CoA desaturase 1 (Scd1) gene expression is increased during the oogenesis process, supporting the oocyte's healthy growth. Taking advantage of gene-edited mice lacking stearoyl-Coenzyme A desaturase 1 gene (Scd1-/-), we analyzed relative gene expression in perinatal ovaries from wildtype, and Scd1-/- mice. Scd1 deficiency dysregulates expression of meiosis-related genes (e.g., Sycp1, Sycp2, Sycp3, Rad51, Ddx4) and a variety of genes (e.g., Nobox, Lhx8, Bmp15, Ybx2, Dppa3, Oct4, Sohlh1, Zp3) associated with oocyte growth and differentiation, leading to a lower oocyte maturation rate. The absence of Scd1 significantly impedes meiotic progression, causes DNA damage, and inhibits damage repair in Scd1-/- ovaries. Moreover, we find that Scd1 absense dramatically disrupts the abundance of fatty acid metabolism genes (e.g., Fasn, Srebp1, Acaca) and the lipid droplet content. Thus, our findings substantiate a major role for Scd1 as a multifunctional regulator of fatty acid networks necessary for oocyte maintenance and differentiation during early follicular genesis.
Collapse
Affiliation(s)
- Huimin Niu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xuetong An
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xinpei Wang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Min Yang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Fei Cheng
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Anmin Lei
- Institute of Shaanxi Stem Cell Engineering and Technology Center, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
5
|
Reiter RJ, Sharma R, Romero A, Manucha W, Tan DX, Zuccari DAPDC, Chuffa LGDA. Aging-Related Ovarian Failure and Infertility: Melatonin to the Rescue. Antioxidants (Basel) 2023; 12:antiox12030695. [PMID: 36978942 PMCID: PMC10045124 DOI: 10.3390/antiox12030695] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Aging has a major detrimental effect on the optimal function of the ovary with changes in this organ preceding the age-related deterioration in other tissues, with the middle-aged shutdown leading to infertility. Reduced fertility and consequent inability to conceive by women in present-day societies who choose to have children later in life leads to increased frustration. Melatonin is known to have anti-aging properties related to its antioxidant and anti-inflammatory actions. Its higher follicular fluid levels relative to blood concentrations and its likely synthesis in the oocyte, granulosa, and luteal cells suggest that it is optimally positioned to interfere with age-associated deterioration of the ovary. Additionally, the end of the female reproductive span coincides with a significant reduction in endogenous melatonin levels. Thus, the aims are to review the literature indicating melatonin production in mitochondria of oocytes, granulosa cells, and luteal cells, identify the multiple processes underlying changes in the ovary, especially late in the cessation of the reproductive life span, summarize the physiological and molecular actions of melatonin in the maintenance of normal ovaries and in the aging ovaries, and integrate the acquired information into an explanation for considering melatonin in the treatment of age-related infertility. Use of supplemental melatonin may help preserve fertility later in life and alleviate frustration in women delaying childbearing age, reduce the necessity of in vitro fertilization–embryo transfer (IVF-ET) procedures, and help solve the progressively increasing problem of non-aging-related infertility in women throughout their reproductive life span. While additional research is needed to fully understand the effects of melatonin supplementation on potentially enhancing fertility, studies published to date suggest it may be a promising option for those struggling with infertility.
Collapse
Affiliation(s)
- Russel J. Reiter
- Department of Cell Systems and Anatomy, Joe R and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
- Correspondence: (R.J.R.); (A.R.); Tel.: +1-210-567-3859 (R.J.R.); +34-91-3943970 (A.R.)
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy, Joe R and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: (R.J.R.); (A.R.); Tel.: +1-210-567-3859 (R.J.R.); +34-91-3943970 (A.R.)
| | - Walter Manucha
- Instituto de Medicina y Biologia Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CONICET), Mendoza 5500, Argentina
| | - Dun-Xian Tan
- Department of Cell Systems and Anatomy, Joe R and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
| | | | | |
Collapse
|
6
|
Multivalent interactions with RNA drive recruitment and dynamics in biomolecular condensates in Xenopus oocytes. iScience 2022; 25:104811. [PMID: 35982794 PMCID: PMC9379569 DOI: 10.1016/j.isci.2022.104811] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/24/2022] [Accepted: 07/16/2022] [Indexed: 11/22/2022] Open
Abstract
RNA localization and biomolecular condensate formation are key biological strategies for organizing the cytoplasm and generating cellular polarity. In Xenopus oocytes, RNAs required for germ layer patterning localize in biomolecular condensates, termed Localization bodies (L-bodies). Here, we have used an L-body RNA-binding protein, PTBP3, to test the role of RNA–protein interactions in regulating the biophysical characteristics of L-bodies in vivo and PTBP3–RNA condensates in vitro. Our results reveal that RNA–protein interactions drive recruitment of PTBP3 and localized RNA to L-bodies and that multivalent interactions tune the dynamics of the PTBP3 after localization. In a concentration-dependent manner, RNA becomes non-dynamic and interactions with the RNA determine PTBP3 dynamics within these biomolecular condensates in vivo and in vitro. Importantly, RNA, and not protein, is required for maintenance of the PTBP3–RNA condensates in vitro, pointing to a model where RNA serves as a non-dynamic substructure in these condensates. RNA–protein interactions drive recruitment of both RNA and protein to L-bodies RNA is non-dynamic in both L-bodies and in vitro condensates Multivalent interactions with RNA tune protein dynamics both in vivo and in vitro RNA, but not protein, is required for maintenance of the in vitro condensates
Collapse
|
7
|
Roden CA, Gladfelter AS. Design considerations for analyzing protein translation regulation by condensates. RNA (NEW YORK, N.Y.) 2022; 28:88-96. [PMID: 34670845 PMCID: PMC8675288 DOI: 10.1261/rna.079002.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
One proposed role for biomolecular condensates that contain RNA is translation regulation. In several specific contexts, translation has been shown to be modulated by the presence of a phase-separating protein and under conditions which promote phase separation, and likely many more await discovery. A powerful tool for determining the rules for condensate-dependent translation is the use of engineered RNA sequences, which can serve as reporters for translation efficiency. This Perspective will discuss design features to consider in engineering RNA reporters to determine the role of phase separation in translational regulation. Specifically, we will cover (i) how to engineer RNA sequence to recapitulate native protein/RNA interactions, (ii) the advantages and disadvantages for commonly used reporter RNA sequences, and (iii) important control experiments to distinguish between binding- and condensation-dependent translational repression. The goal of this review is to promote the design and application of faithful translation reporters to demonstrate a physiological role of biomolecular condensates in translation.
Collapse
Affiliation(s)
- Christine A Roden
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, USA
| | - Amy S Gladfelter
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, USA
| |
Collapse
|
8
|
Regulation of spatially restricted gene expression: linking RNA localization and phase separation. Biochem Soc Trans 2021; 49:2591-2600. [PMID: 34821361 DOI: 10.1042/bst20210320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022]
Abstract
Subcellular restriction of gene expression is crucial to the functioning of a wide variety of cell types. The cellular machinery driving spatially restricted gene expression has been studied for many years, but recent advances have highlighted novel mechanisms by which cells can generate subcellular microenvironments with specialized gene expression profiles. Particularly intriguing are recent findings that phase separation plays a role in certain RNA localization pathways. The burgeoning field of phase separation has revolutionized how we view cellular compartmentalization, revealing that, in addition to membrane-bound organelles, phase-separated cytoplasmic microenvironments - termed biomolecular condensates - are compositionally and functionally distinct from the surrounding cytoplasm, without the need for a lipid membrane. The coupling of phase separation and RNA localization allows for precise subcellular targeting, robust translational repression and dynamic recruitment of accessory proteins. Despite the growing interest in the intersection between RNA localization and phase separation, it remains to be seen how exactly components of the localization machinery, particularly motor proteins, are able to associate with these biomolecular condensates. Further studies of the formation, function, and transport of biomolecular condensates promise to provide a new mechanistic understanding of how cells restrict gene expression at a subcellular level.
Collapse
|
9
|
Fassler JS, Skuodas S, Weeks DL, Phillips BT. Protein Aggregation and Disaggregation in Cells and Development. J Mol Biol 2021; 433:167215. [PMID: 34450138 PMCID: PMC8530975 DOI: 10.1016/j.jmb.2021.167215] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/01/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022]
Abstract
Protein aggregation is a feature of numerous neurodegenerative diseases. However, regulated, often reversible, formation of protein aggregates, also known as condensates, helps control a wide range of cellular activities including stress response, gene expression, memory, cell development and differentiation. This review presents examples of aggregates found in biological systems, how they are used, and cellular strategies that control aggregation and disaggregation. We include features of the aggregating proteins themselves, environmental factors, co-aggregates, post-translational modifications and well-known aggregation-directed activities that influence their formation, material state, stability and dissolution. We highlight the emerging roles of biomolecular condensates in early animal development, and disaggregation processing proteins that have recently been shown to play key roles in gametogenesis and embryogenesis.
Collapse
Affiliation(s)
- Jan S Fassler
- Department of Biology, University of Iowa, Iowa City, IA 52242, United States.
| | - Sydney Skuodas
- Department of Biology, University of Iowa, Iowa City, IA 52242, United States. https://twitter.com/@sskuodas
| | - Daniel L Weeks
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, United States
| | - Bryan T Phillips
- Department of Biology, University of Iowa, Iowa City, IA 52242, United States. https://twitter.com/@bt4phillips
| |
Collapse
|
10
|
Guo Q, Shi X, Wang X. RNA and liquid-liquid phase separation. Noncoding RNA Res 2021; 6:92-99. [PMID: 33997539 PMCID: PMC8111091 DOI: 10.1016/j.ncrna.2021.04.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/09/2023] Open
Abstract
Liquid-Liquid Phase Separation (LLPS) is a biological phenomenon that refers to the components of similar properties form droplets condensate in cells. These droplets play an important role in maintaining the stability of order in cells. In the studies of phase separation, weak multivalent interactions between proteins have always been the focus of attentions. With the deepening research of phase separation, more and more evidences show that RNA, especially long noncoding RNA (lncRNA), also plays an important regulatory role in the phase separation. We summarized recent researches between phase separation and RNA, and focused on the function of non-coding RNA (ncRNA) in the process of phase separation. In fact, phase separation and RNA have a two-way regulation relationship. Noncoding RNA usually recruits proteins as molecular scaffolds to drive phase separation. On the other hand, phase separation is also involved in RNA transcription, transport, metabolism and other processes.
Collapse
Affiliation(s)
- Qi Guo
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Xiangmin Shi
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Xiangting Wang
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|